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The paper begins by noting that the practical and efficient numerical analysis of thin
walled shells is far from a reality.

Groundwork for the investigation starts with an examination of existing sufficiency
conditions for convergence of the finite element method of analysis with refinement of
mesh size; new and more practical conditions are then given specifically for shells.
Working formulae of a suitable first approximation theory for the linear small deflexion
behaviour are then given for arbitrary shells in lines of curvature and in geodesic
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114 L.S.D. MORLEY

coordinates. A variational principle is introduced which is more general than that for the
well known assumed stress hybrid finite element model; its purpose is to provide a means
to overcome the excessive rank deficiency which is sometimes encountered in the derived
element stiffness matrix.

The formulae are next specialized to general developable shells for they are the
simplest to analyse and frequently occur in technology. Emphasis is given to the deriva-
tion of general formulae governing inextensional deformation, membrane action and
rigid body movement because these constitute important factors in any adequate
numerical analysis.

Specific application is made to circular cylindrical shells by first considering the
interpolation of the kinematic continuity conditions along an arbitrary geodesic line.
Details and numerical examples are provided for the first known fully compatible lines
of curvature rectangular finite element which directly recovers arbitrary rigid body
movements as well as inextensional deformations and membrane actions.

The paper concludes with details and numerical examples of an arbitrarily shaped
triangular finite element which employs the above mentioned variational principle in
conjunction with linearly varying stress fields. All the rigid body movements are
directly recovered as well as inextensional deformations and membrane actions. It is
anticipated that this finite element and its derivatives will find widespread application.

1. INTRODUCTION

It can hardly escape the notice of the most casual observer that shells, i.e. thin curved plates, are
commonplace in almost every aspect of modern day life. We fully sympathize, therefore, with
the more discriminating individual who is perplexed when he discovers that serious difficulty is
still experienced by designers in calculating the behaviour of the shell even for some apparently
simple static situations. This fact must cause surprise also among fellow engineers, scientists and
mathematicians who work in other fields because they are aware that the finite element method,
the brainchild of the structural analyst and conceived just at the right time in the dawn of the
computer age, has grown up in so many other respects to be such an astonishing success. Where
and what is the root cause of the difficulty? The answer to this question is by no means straight-
forward for it lies partly in the nature of the underlying shell theory and partly in a deficiency, or
perhaps it is a lack of understanding, of the present character of the finite element method.

Let us very quickly trace the development of linear shell theory the first treatment of which,
from the point of view of the general equations of elasticity, is credited to H. Aron in 1874 (see
the treatise by Love 1927). Much of the early work was directed towards an understanding of the
vibrations of shells so as to predict the tones of bells. Lord Rayleigh (1881) deduced from physical
reasoning that the middle surface to the vibrating shell remains unstretched and accordingly
derived a theory of inextensional deformation. A first complete theory, based upon the now well
known Love-Kirchhoff assumptions, was given by Love (1890). This theory is often referred to
as ‘Love’s first approximation theory’ and, despite certain shortcomings, has occupied a position
of prominence ever since. It led to equations of motion and boundary conditions which were
difficult to reconcile with Lord Rayleigh’s theory. Later investigations showed, however, that the
extensional strain which had been proved to be a necessary concomitant of the vibrations was
practically confined to a narrow region near the edge of the shell. This rapidly decaying edge
effect can be adjusted so as to secure the satisfaction of the proper boundary conditions while the
greater part of the shell vibrates in an inextensional manner according to Lord Rayleigh’s
original conjecture. The main shortcomings in Love’s first approximation theory are the lack of
symmetry in the expression for the change of twist and the assumption of a symmetric shear stress
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ANALYSIS OF DEVELOPABLE SHELLS 115

resultant. The challenge proffered by these shortcomings incited, in more recent times, a
tremendous effort into further development of shell theory, there being considerable rivalry
between authors to achieve higher accuracy for their equations on account of more rigorous
derivation from the basic assumptions. It was left to Koiter (1960) to point out, in view of the
approximate character of the Love-Kirchhoff assumptions, that many of these claims for higher
accuracy must be open to doubt, Koiter showed that in most cases the further developments
involved refinements which are of the same order of magnitude as the errors which remain on
account of the basic assumptions. Such refinements are, of course, meaningless in a general
theory. Thus, the lavish effort spent on the further development of linear first approximation
shell theory in the present century did not lead, after the initial corrections had been made, to any
significant improvement of Love’s general equations, although it is true that there is now a much
better understanding of the nature of the approximations.

At first sight, it may seem incongruous that the attention paid to these versions of the theory
was matched with marked reluctance to become involved with numerical applications of any
of the versions. This is understandable, however, when it is realized that the degree of algebraic
complexity which builds up during numerical solution by continuous function processes (say) is
such that it soon becomes quite overwhelming. This complexity led to the separate development
of approximate methods, notably the membrane theory where the stress resultants are calculated
from purely statical considerations; the deflected shape is calculated from particular integrals of
the stress resultants of membrane theory supplemented with complementary function solutions
derived from inextensional theory. Membrane theory has valid application only to those problems
where the proper boundary conditions can be satisfied and where the stresses from bending are
insignificant in comparison with those from stretching as a membrane; problems which involve
rapidly decaying edge effects are therefore specifically excluded. These restrictions are sufficient
to severely limit the practical usefulness of membrane theory to a relatively small number of
situations. Another approximate method known as shallow shell theory provided an alternative
approach towards obtaining numerical results, it is associated with many names of which some
of the best known are Donnell (1933), Marguerre (1938) and Vlasov (1958). Unfortunately,
shallow shell theory rests on a number of simplifying assumptions with reference to the deforma-
tion pattern and these are not generally applicable. Approximate methods of calculation have
a much more secure foundation in the special although technically important circular cylindrical
shell. Here, simplified but adequate governing equations are available which are completely
consistent within the basic assumptions of first approximation shell theory; one of the best known
is that presented by Morley (1959) and later justified by Simmonds (1966), Koiter (1968) and
Morley (1972).

About a decade ago, after the finite element method of analysis for planar and solid continua
was reasonably well consolidated with the facilities afforded by the high speed digital computer,
the time seemed ripe to engage with detailed numerical analysis of the general shell problem. In
early work, the shape of the actual shell reference surface was approximated as a polyhedral
surface formed from an assembly of flat facet elements, usually triangular in shape, in which the
bending and stretching behaviours are separately represented, see, for example, Clough &
Johnson (1968). Flat facet elements are known to suffer kinematic discontinuity at the inter-
element boundaries but, nonetheless, it is on record that they provide reasonable results for some
problems. They do not, however, constitute a general means of solution because there is no
assurance that the results of first approximation shell theory are reproduced in the limit of

8-2
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refinement of the facet representation.t Recognizing the limitations, many authors have since
given attention to the development of curved finite elements so that the shape of the shell surface
is accurately represented, see the reviews by Gallagher (1969, 1974) and Dawe (1971). Neverthe-
less, the practical and efficient numerical analysis of shells is still far from a reality.

The finite element method is identified as a Rayleigh—-Ritz process and its success in the
analysis of planar continua is in no small part attributable to the fact that it is a simple matter to
select trial functions for the displacements which reproduce independent distributions of constant
(or nearly constant) strain for each component €,,, €55, €5 Or, as the case may be, for each
curvature change component ky,, Ky, K10.5 This is, indeed, central to the sufficiency conditions
for convergence of the finite element displacement method as discussed by Melosh (1963) and
Tong & Pian (1967). Correspondingly, sufficiency in the finite element analysis of shells would
require trial functions for the displacements which reproduce constant, or nearly constant,
values for all six components €4, €55, €15, K11, K29, K15. 1 his i3, however, quite impossible to achieve
because of the nature of the compatibility equations for shells; in particular when ey =€y =€;,=0

these equations require that «
11

Koo
== =0
R, "

R -
for lines of curvature coordinates with R, and R, the principal radii. At most, therefore, only two
independent distributions of constant curvature change are admissible and these refer to &, and
a combination between ky;, kg There are other kinds of difficulties and, to reveal these, it is
necessary to examine the character of symbolic strain and curvature change components € and «
in relation to trial functions for the out of surface displacement W; the two insurface displace-
ments can be ignored for this purpose. Symbolically,

e=WR, «=—0W/og,

where R is a radius of curvature of the middle surface and £ measures arc length on the surface.
Consider polynomial trial functions
W=oy+a,f+ay8?,

where o, a,, a5 are constants. This gives
€= (a;+as§+ozE?)[R, k= —2a;

The trial function in ¢, is seen to provide an independent and constant strain e, but the trial
function in a, contributes to both ¢ and «. Let us examine whether it is practicable to limit the
size of the finite element so that the contribution from e is negligible in comparison with the outer
fibre strain from «. Now, it is fundamental to first approximation shell theory that the relative
error is O(A/R) so that the strain ¢ is negligible if

¢/R = O(xkh?/12R?),

where £ is wall thickness and the symbol O is read as ‘a term of order most...’. Thus, to secure
a (virtually) independent and constant distribution of curvature change « requires the size of the
finite element to be limited by the condition

£=0(h).

+ This remark applies equally to the more recently developed isoparametric finite element, see, for example,
Zienkiewicz, Taylor & Too (1971).
1 A list of the principal symbols appears at the end of the paper (pp. 167-9).


http://rsta.royalsocietypublishing.org/

) |
o \
C

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS OF DEVELOPABLE SHELLS 117

The severity of this limitation remains undiminished when trial functions like those in ; and o,
provide compensating adjustment, it is such as to preclude a satisfactory basis for practical calcu-
lation. All this applies equally when the outer fibre strain }«# is of the same order of magnitude
as that from e, this state occurs in Gol’denveizer’s (1961) ‘simple edge effect’. There are as many
different types of edge effect, all of which decay rapidly in intensity with distance away from the
edge, as there are types of stress and strain distribution in the shell interior. The simple edge effect,
however, assumes importance in finite element philosophy because the intensity ofits components
of stress and strain is constant, or nearly constant, along the edge. Symbolically, the solving
equation of simple edge effect is

oW At
'a—gjl-'l'WW: 0,

where A is of order unity so that we identify

W = a(§) exp (—AE[ (RR)),

where a(§) is smoothly varying and the origin of £ is on the edge with positive direction towards
the interior.

In view of these remarks, there must be reservation in subscribing to the body of opinion as
expressed by Strang & Fix (1973) that ... the (finite element shell) problem is in every essential
respect like any other problem in the plane’. It seems to us that existing sufficiency conditions for
convergence, directly extrapolated from those for planar continua, are not really applicable and
therefore provide inadequate guidance to the selection of trial functions in the practical finite
element analysis of shells. Moreover, some rather special analytical techniques remain to be
evolved. Our earlier discussion points towards four quite sharply defined states of static response,
they may be summarized as

(I) membrane actions where the outer fibre stresses/strains from bending vanish or are
insignificant in comparison with those from stretching;

(II) inextensional deformations where the middle surface of the shell remains unstretched.
The stresses/strains from stretching vanish or are insignificant in comparison with those from
bending;

(IIT) rigid body movements which contribute nothing to the stresses/strains;

(IV) edge effects where the stress/strain intensities from stretching and bending may be of the
same order of magnitude, they decay rapidly with increase in distance away from the edge or
discontinuity.

Practical conditions for convergence in the finite element analysis of shells require the trial
functions to have capability to reproduce, in a general but piecewise smoothly varying way, each
of these four states of static response. (Simple edge cffects are regarded as smoothly varying.)
Thus

(1) arbitrary choice of low degree polynomial displacement trial functions has already been
demonstrated to lead to significant membrane actions where the curvature changes k,;, Kq5, Kys
are negligible. Particularized responses are required for each of the three strain components
€11, €22, €125

(ii) trial functions which reproduce inextensional deformation have to be selected from the
set of complementary function solutions to the partial differential equations in the displacements
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which govern €;; = €3, = €, = 0. Particularized responses are required for a curvature change
combination k,; with k,,, and, separately, for ;,. Note here the relation ky;/Ry+ kyge/R; = 0;
(iii) trial functions for rigid body displacements satisfy the partial differential equations of (ii)
as well as those which govern «;; = kpy = K;5 = 0;
(iv) trial functions which reproduce simple edge effects require to be of the type

W = a(£) exp (—AE[(RR)).

While it is true that awareness of the existence of these response states dates back to the early
work of Love, it is equally true that the essentially more recent literature contains no record of
premeditated finite element development to recover, in a practical and efficient manner, each of
these four states of response. It is daunting, indeed, to reflect upon the hard won progress when it
is realized that we are not yet sensibly poised to deal with the finite element analysis of Lord
Rayleigh’s problem of predicting the tones of bells.

Acknowledging all this, we feel constrained to confine the objective of the present investigation
to a cautious re-examination and development of finite element technique towards the solution
of a special class of shell which has developable middle surface. Developable surfaces have con-
siderable advantage in that they are relatively simple to analyse and this constitutes the prime
motive in so specializing the investigation from the arbitrary shell; they do, however, embrace
the most frequently occurring shapes in technology and include the especially important circular
cylindrical shell which we select as the vehicle for numerical demonstration. The objective is
further moderated so as to exclude questions of edge effect. This must not be construed, however,
as a statement that strong coupling rarely occurs between all aforementioned states (I)-(IV) of
static response, if this were true then the practical usefulness of membrane theory would have
been more widely extended a long time ago. Finally, the technique does not admit capability to
deal with highly localized effects such as those caused by concentrated loads or discontinuous
boundary conditions, these require further and specialized attention such as in the manner
described by Morley (1973).

Mr B. C. Merrifield was responsible for major contributions to the computations. It is a
pleasure to acknowledge his invaluable assistance.

2. SELECTED RESULTS FROM FIRST APPROXIMATION SHELL THEORY
AND VARIATIONAL PRINCIPLES

In surveying sources of error in the analysis of shells by the finite element method, Morris
(1974) points out that the most rigorous considerations should govern the selection of the under-
lying shell theory so as to be certain that any errors which do arise come from the numerical
approximation technique and not from an unsuitable shell theory. It is unnecessarily perilous to
ignore the intent of this advice but it need not hinder a more relaxed attitude, identified with the
name of Koiter, as to what constitutes a satisfactory first approximation shell theory.

Shell theory sets out to provide a two dimensional representation of an essentially three
dimensional problem by dealing with variables defined only on a reference surface, usually the
middle surface. An important identifying feature is the wall thickness 4, measured as the distance
between the bounding surfaces of the shell along a normal to the reference surface. This wall
thickness, taken relative to a radius R of curvature or of torsion of the reference surface is a crucial
parameter //R governing the response to external loads. Neither the wall thickness nor material
properties need be uniform although they are in a large number of practical cases.
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ANALYSIS OF DEVELOPABLE SHELLS 119

Although the expectancy is that the thinner the shell the more accurately the actual three
dimensional stress and displacement field can be inferred from a two dimensional solution
(except in regions of highly concentrated loading, discontinuities and, possibly, close to the
edges), it is wise to accept at the outset that shell theory is approximate and that extreme rigour
in its development is hardly desirable. In no sense, however, does this justify free licence for
arbitrary approximation. Thus, in Koiter’s (1960) very careful examination of the character of
two dimensional shell theory he commences by establishing that Love’s (1927) so called first
approximation for the strain energy, as the sum of the bending and stretching energies, is indeed
a consistent first approximation. An evaluation of the differences which arise between this and
the strain energy from a rigorous evaluation of the Love-Kirchhoff assumptions shows that the
differences are of the same order of magnitude as those due to the inherently neglected effects of
transverse normal and shearing stresses. An important observation is that these differences are
of the same order of magnitude as those caused by replacing « with « + Ae/R where k is any physical
curvature change component, A is non-dimensional O(1) and e is any physical surface strain
component. With a reservation concerning the shear stress resultants and twisting couples, this
means that changes may be made in the strain energy expression which are equivalent to adjusting
the constitutive relations of first approximation theory by replacing not only « with « + Ae/R but
also ¢/R with €/R + Akh?[12R?. In other words, theories which differ only by terms of this type are
said to be equivalent within first approximation theory. This latitude has led to the situation
where, as commented by Budiansky & Sanders (1963), it is only a slight exaggeration to say that
each investigator favours a different theory.

Itis by no means the present purpose to provide just one more version of a first approximation
shell theory, it is more a matter that because there are so many feasible alternatives it seems
prudent to assemble in the required detail all the working formulae of that theory which we find
most suitable for the finite element analysis of linear small deflexion behaviour. This makes
reference convenient, unambiguous and consistent. The given formulae essentially agree with
those developed by Sanders (1959) and by Koiter (1960) but the outline vector derivation given
here follows a different emphasis, it owes rather more to the work of Gol’denveizer (1961). It
provides a simple apparatus for systematic manipulation of the formulae into the form most
suitable for the actual application. The kinematics of bending and stretching of the reference
surface are treated in some detail because, as has already been pointed out in §1, the often
neglected inextensional deformations{ of the shell play a special and important role in finite
element analysis by the displacement method. Formulae for the statics of stress resultants and
stress couples are then written down with the aid of Gol’denveizer’s static-geometric analogy.
Convention is followed by using lines of curvature coordinates although there are subsequent
transformations along arbitrary orthogonal directions to facilitate the introduction of geodesic
coordinates. The formalism of tensor algebra is avoided, this kind of abstraction does not seem
appropriate to the applications which are considered in the sequel.

The section concludes by introducing a new variational principle. In a finite element analysis,
major difficulties can be experienced in finding suitable Rayleigh—Ritz trial functions for dis-
placements which permit direct application of the principle of minimum total potential energy.

T The smoothest distributions of displacements which produce inextensional deformation are called ‘sensitive
solutions’ by Morley (1972) and by Morris (1974). The description is apt because many finite element analyses
produce extraordinarily inaccurate results when they are set the task of recovering these simple and very basic
solutions. '
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Consequently, many authors give attention to alternative finite element approaches and these
are characterized by several different variational principles. The text by Washizu (1968) contains
an account of basic variational principles while Pian & Tong (1969) and Tong (1970) describe
modified principles which are designed specifically for finite element analysis and allow various
relaxations of the inter-element continuity requirements. In the course of the present treatment
of the shell problem, however, we encounter further difficulties, specifically in excessive rank
deficiency of the stiffness matrix. The new variational principle provides a relatively simple
means to overcome these difficulties.

2.1. Geometry and kinematics

Let zy, z,, z, refer to a fixed right-handed orthogonal cartesian coordinate system and denote
by r the position vector of a generic point so that

r=2ze +z,e,+2z3e, (2.1)

where the e; are unit vectors in the z; directions. Let the lines of curvature on the reference surface
of the shell be used as an orthogonal coordinate net with £; and &, the coordinates, see figure 1,
as in Reissner (1941) and Sanders (1959) so that

zi = zi(gla §2) (l = 1) 2) 3)) (22)
and r=r(£,8). (2'3j
An infinitesimal increment of the vector r is given by

or or
dr = E_)—gldgl+a—g2dg2

= oyt dE; +oyt,dEy (2.4)
where ¢, and ¢, are defined as unit tangent vectors in the §; and £, directions respectively with

1 0r 1 0r

SRR (22)
where the coefficients of the first fundamental form are given by
alz%, a2=éa—£'—;, (2.6)
The orthogonality of the coordinates §; and &, requires that
£ty =0, (2.7)
so that the square of a linear element on the reference surface is given by
dr-dr = a?d&2+oa3dE3. (2.8)

If n is the unit normal vector which acts in the z direction, see figure 1, and is defined by

n=txt, (2.9)
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then we can write down the following well known equations for the derivatives of ¢, £, and n with

respect to &; and &,

O, 10, a0 10a,

0&, oty 08y 2 R, 08 0% »

0ty 1 0oy oty 1 Oty Ay
a7 = — a7 ko g =——xp bi—p N,
05, a,08, 0&, o, 08, R,
n_a, n_%,

o, RT %, R, ”

(2.10)

where R; and R, are the principal radii of curvature in the £, £, directions respectively. The

identity

’n  0n
05,08, 08,08,

provides the Codazzi relations

(@)t ()L
0y \Ry)  Ry08y 05 \Ry) R 0&°
0
Nll’ _Mll

R,

v, Uv B '_¢¢7

'gh p:s Ulv —¢2

Ficure 1. Notation for the developable surface,

Vol. 281.

(2.11)
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02t 02t
while the identit 11
, o OE,0F, ~ 05,08,
provides the Gauss relation
0 (1 E)oc2> 0 (1 aocl) oo
=\ ) tar =t 2.12
o \wog,) YoE\waE,) T TRE, (2.12)

In the sequel it is convenient to re-express the position vector r of equation (2.3) in the

alternative form

. (€1, 62) = prty+potatpun (2.13)
where, in the usual way,

pr=1t, py=1-ty p,=1'Nn (2.14)
The displacement vector U of a point lying on the reference surface may be written in the form
U=Ut, +Uyt,+ Wn (2.15)

where the components U;, U, and W have the directions as shown in figure 1. The accompanying
rotation of the point is given by the vector & where

D =—dyty+ Pty +P,n (2.16)

and this is related to the displacement vector by the equations
by = 13U = U, 1jow
1T ey a§1 R, o0&
1 aU U, 10w

SRR AL AR 217
é z_(iﬂ]_t 16Ut) 1 (aoczUz_aoclUl)
"2\ 04, a, 0, 20005 \ 08, 08, )
The (small) strains are given by
10U 1 0l 1 O w
= g T 0 O et Ry
b = “iz% o = “lz%gf_l-“ll“zggf b II;V,
10U | 10U (2.18)
€15 = €91 = (“1a§1 L2 +_a_€2 t1)
__(iaflz__}__a;“l 130, 1 O )
2\ 08, g0, 08, 1 2,08, o0y 08,
while the (small) curvature changes are given by
Ky = 1o ia¢1 1 Oy b
% ag1 oy 6'51 oy 05 08,
Kog = ‘ig‘? 1= ia¢2 : a0629151,
%508, Qo agz oy 0ty 08y (2.19)
ke -2y L10P L B, P
1 08, 1 208 aya, 08, Ry
108, 10 L tay 4,

Koy = —=7 "t = +5 -
2 oy 08, : 0y 08y 00908, 2 R,
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The definitions which are given above for €5, k4, and «,; yield the identity

1 1 )
Kig— Koy = — |5 —5 )€ 2.20
12 21 (Rl R2 12 ( )
and, in view of this, we may reduce the number of strain and curvature change measures to six
through the substitution Ris = 4(Kys +Kay). (2.21)
' _1f1 1
It follows that K2 = Kia—= |5 —5) €12
2\R, R,
(2.22)

1(1 1
K21_K12+ R R

In the finite element analysis in the sequel there is need to consider behaviour along contours
which do not coincide with the §;, §, lines of curvature coordinate system. On these occasions it
is convenient to introduce additional orthogonal curvilinear coordinates v and o lying on the
reference surface and orientated in the positive sense as shown in figure 1. An infinitesimal
increment of the position vector 7, see equation (2.4), is now given by

dr = o, t,dv+o,t, do, (2.23)

where the unit tangent vectors t,, £, are related to those of the §;, £, coordinate system by

t, = t,cosy+t,siny, } (2.24)

t, = —t;siny +t,cos7,

where 7y is the included angle between tangent vectors ¢, and #;. On substituting equations (2.24)
into (2.23) and then comparing with equation (2.4) we find

o, dv = a;d§; cosy +a,dE,siny = (ag dé, + ag dgz)

(2.25)
a,do = —a,;d§;siny +a,dé,cosy = o, (ag d§, + ag d!jz)
From this it follows that
19 o +6cr 0 os 0 g 10
%, 08, O, v 0,00 vy o Yy a0
(2.26)
19 6+60' 0 —sin 19 1
2,08, 0,00 0F, 00 Y m TS o
or, alternativel 10 _ S li+ in 1o
’ Y o,dv €0 Yalagl 5 yazi‘)gz’
(2.27)
13 0 1
OC_aO' smy lagl-l‘COSj/“—za—gz.

Aided by equations (2.10), the derivatives of ¢,, £, and n with respect to v and o are soon
established as ot

v __ @, atu _ 2
5 = a,k,t, R n, o= “"k"t"+RWn’
ot, a, ot a
L =akt+5n, —==-—-akt,—-n 2.28
ov R, oo 7Y R, (2.28)
on « a on « a
vy > S _Zoy Ze
w " RYR.” % RTR,™
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where —£, and £, are respectively the geodesic curvatures of the curves o = constant and
v = constant

10t, 1 O,
ko=t X"E = ococ oo
1 {a
— (a; cosy) — =5 (etgsin y)}
T 0 0F,
1% 08, 5 (2.29)
bt X_1~at(, 1 Oa,
o " 80 a,a, oy
= o (siny) + 5 (@acosy)),
oy |08, 18iny) + ag 2 COS Y
and R,, R, and R, are defined by
1 _ cos’y sin®y 1 _sin2y+cos27
R, R1 R, R, R, Ry, ’
(2.30)

( 1 ) smy Cos .
Vo' 2
)

The displacement vector U of equation (2.15) for points on the reference surface can now

be expressed alternatively by
U=Ut,+U,t,+Wn (2.31)

where U, and U, are respectively the components of displacement in the v and o directions and

U = Ulcos.'y+Uzsin v, } (2.32)
U, = —Usiny + U, cosy.
Similarly, the rotation vector @ of equation (2.16) can be expressed by
= _¢0tv+¢vta+¢nn’ ) (233)
10U u U, 1w
where ¢, =—— % o ‘N = ¢;cosY+ Pysiny = R R w0
19U Uu U 1w
¢o’=_;—_67; n—_¢151n7+¢20057—7€;—12—w_a_,,3&—’ (2.34)
10U , 193U 1(18U, 130,
Pn = (oc e ) = 5(;%7”«% P T U)

Analogously to equations (2.18), the expressions for the strains as referred to the new coordinate
system are given by

19U 190, w

€,, = P *t, = €;,COS y+62251n27+2612s1n7/cos7—;V o +k”U"+R ,
10U . . 10U, w
= &;%—.t" = €,;SIN2 Y + €95 COS2 Y — 261, 8IN Y COS Y = P k"U"+R ,

(2.35)
10U 10U . .
€y = €gp = (06 aV tv'+a a -t ) = - (611_622) Slnycosy+€12(CO827—51n2 7)

110U, 100, 14
(At s )

14 (o
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The analysis in the sequel does not require expressions for the curvature changes in the new
coordinate system although reference is made to quasi measures K,,, Kqqy K,y Ky, as given by

10 9
K, = % b, = K3 COS2Y + KggSIN2Y + (Kyg + Kyp) SINY COS Y
194, 2
= '&— ) kv¢17_-——':
109 .
Ky = ~a o *t, = Kq15In%y + Ky, COS2Y — (Ky5 + Kgy) SIN Y COS Y
a¢(7+k ¢V ¢7L ,
oc oo R,
(2.36)
109 . 9 -
e = _-&-ﬁ't” = — (Ky3 — Kgg) SINY COS Y + K15 COS2 Y — Koy SiN?y
14
134, P
= oAk R
100 . .
Kyy = —=a—"t, = — (K31 — Kag) SIN Y COS Y — Ky, 8IN% Y + Ky, COS% 7Y
a, 0o
_ 199, P
= “—0 3 —/C,,¢,+—R:.
Equations (2.36) with (2.20) provide the identity
1 1
Kye = Kgy = K1g—Kgy = "'(R R )612> (237)
and, in view of equations (2.21), the last two equations in (2.36) may be combined as
Kyy = %(Kmr + Ku’v) = (Kll - K22) sin ycosy+ EIZ(COSZ Y- sin? 7/) . (2 38)

(Note that the above quasi measures are the static geometric analogue to equations (2.58) in
the sequel.)
2.2. Static-geometric analogy

The derivatives of the vectors U and @ are expressed in equations (2.17)—(2.19) in terms of
the rotation, strain and curvature change measures and, indeed,

oUu
= arfernty + (€a+ By) ta— By}, )
1
oU
& %a{(€1— Pn) b+ €a5 by — P12},
a; (2.39)
o, = ay( —Kyp b +Ky b+ §i0),
1
oD
a_g.— = az( — Koty +K'21t2+§2n)’
2

where it is convenient to introduce, temporarily, the quantities {; and &, as defined by

_1_@2-11 g —_}_@.n
o, 08; 2 oy 08y

&= (2.40)
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If equations (2.39) are regarded as differential equations to determine U and @ from known
€115 €225 €135 P1, €tC. then the requirements for integrability—compatibility are

Now, instead of writing down the resulting equations of compatibility, it is more appropriate
to our needs to make immediate resort to the static-geometric analogy due to Gol’denveizer
(1961), that is to make the following correspondence of variables

€11—> — My, K11 > Nop, &> Qs
€99 —> — M1, Koo —> N1, -—0Q,
22 11 22 11 €2 Ql (2.42)
€1p = €91 > Myy = My, Kkyg—>— Ny,
Koy = — Ny,
and so derive the equilibrium equations. The complete set of equations may be written
Oy Ny Oty N21 Oory Ooty oc2
agl + agz ag 1\712 ag N Ql - —“1“2101,
oty Nyp | 0ty Ny, | Oty Oay “2 _ *
TOE, T, Tog, mTag, ntTR, QT atatt
0oty Q4 ‘3‘3‘1(22__0C o, N11_|_N22 = a0, p,
0, 0&, R, R,
(2.43)

Ocey My | Ooy My, | Doty 0oty _
agl + agz +ag M12 ag M O‘la2Q1 - 03

Ootg Mo aa1M22 Oy M 0oty

+ —aqa =0,
o6 tog, o hemag, Mum s
11
Ny — N21+(R R)M =0,

which agree with those of Sanders (1959) when M, = M,,. The right hand sides of these equations
provide the contributions from the distributed surface forces pyf', p5 and p* (see figure 1). The
first three of these are the equations of equilibrium in small deflexion first approximation shell
theory, the fourth and fifth equations serve to define the normal shearing forces @, and @,, while
the sixth equation relates to moment equilibrium about the normal to the reference surface and
is the analogue of the identity which is given in equation (2.20).

If the following additional correspondence of variables is made,

U= Ue>—Xs, W—>—9¢ (2.44)

then x;, Xs and ¥ are stress functions such that equations (2.17)—(2.19) with (2.42) provide
stress resultants N;;, Nyg, Npa, Npy and stress couples My, Moy, My, = M, which satisfy the equa-
tions of equilibrium with pf = p5 = p* = 0.

The static-geometric analogy is completed by introducing the quantity Ny, by

Nz = §(Nya + Noy), (2.45)
and noting from equations (2.21) and (2.42) the correspondence of variables

Ria—>— Ny (2.46)
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Equations (2.22), or the last of equations (2.43), then provide the relations

(2.47)

2.3. Constitutive relations and accuracy of results

Attention is now confined to the important case where the shell is constructed from an isotropic
elastic material for which the constitutive relations may be taken to be the same as in Love’s
first approximation,

12D
Nll = 75- (611 + V€22), M11 = D(Kll + VK22),
12D
Ny = Rz (s t+ven), My = D(kgy+vyy), (2.48)
_ 12D =z
N12:7(1—V)€12, Mlg =D(1——V)K123

where £ is the wall thickness, D is the flexural rigidity

Enr3
D= 31 =) (2.49)
where E is the Young modulus and » the Poisson ratio.

Koiter (1960) has already pointed out that it is useless to attempt to achieve greater accuracy
in first approximation theory by refinements to the constitutive relations. The magnitude of any
such ‘improvements’ can only be of the same order as that of the errors which are anyways
inherent because of the approximate character of the underlying Love-Kirchhoff assumptions.
Indeed, the shell problems which are most suitable for analysis by the finite element method are
concerned with stress and deformation patterns where the wavelength is many times the wall
thickness 4.7 In these circumstances, the relative error in an analysis by first approximation shell
theory is O(h/R) where R is any radius of curvature or torsion of the reference surface. Thus, since
a typical stress resultant N produces a stress intensity of N/, while a typical stress couple produces
a maximum stress intensity of 6 /A2, it follows that

(i) if RN = O(M) then N contributes negligibly to the significant fibre stress,
(it) if M = O(KRN) then M contributes negligibly to the significant fibre stress, (2.50)

i) £ = h2/12R? may be ignored in comparison with unity.
y g P y

Consequently, ifa comparison of results from a numerical method, like the finite element method,
is made with those from an explicit solution to a first approximation theory, then one must be
prepared to accept large relative differences in the magnitude of stress resultants N or stress
couples M which contribute negligibly to the significant fibre stress.

Similar conclusions can be drawn about the strain and curvature change components by
making use of the static-geometric analogy.

T The wavelength of simple edge effect is >./(Rh).


http://rsta.royalsocietypublishing.org/

)\
C

|

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

—
NI
olm
~ =
kO
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

128 L.S.D. MORLEY

2.4. Energy, boundary conditions and variational principles

The strain energy is the sum of the uncoupled bending and stretching energies, as in Love’s
(1927) theory. It is supplemented here with expressions for the work done by the surface loads
and by the edge tractions, this latter provides a means of deriving boundary conditions appro-
priate to the first approximation shell theory.

A brief statement of the principle of minimum total potential energy is then given before
deriving a variational principle from a finite element version of the Hellinger—Reissner (1914,
1950) principle. The new principle requires trial functions to interpolate, along the finite element
boundaries, the complete kinematic conditions which maintain inter-element compatibility. The
behaviour over the element is then partially described in terms of trial functions for stress
resultants and stress couples and partially in terms of trial functions for displacements. The
combination is such as to achieve rank sufficiency in the derived element stiffness matrix together
with a ‘best’ satisfaction of compatibility at the element boundary. The variational principle
separates naturally into two successively applied principles. The first principle operates at
element level and is concerned with minimization of complementary energy, while the second
applies at global level and is implicitly concerned with minimization of the total potential energy
estimate. For the purpose of practical computation, however, there is advantage in simplifying
the strictly derived second principle so that it is explicitly concerned with minimization of the
total potential energy estimate. The new variational principle has versatile application, it is
recognized as a generalization of the assumed stress hybrid model introduced by Pian (1964), see
also Pian & Tong (1969), it provides a means to rectify the inadequacies of some existing
non-compatible displacement finite element models.

It is convenient to introduce special notation, freely used in the sequel, so that displacements,
strains and curvature changes, stress resultants and stress couples together with surface forces
may be expressed as column matrices. Thus, '

U= (U,TU,W)", N =

Ue= (U UW)T,

US = (UF U ¢ WH)T,

Uo = (G0, 6,6, W)",
& = (€11 €an €19 €21 K11 Koo K19 Ka1) T,
€ = (€11 €99 2615 K1y Kgg Ky9) T,

N = (Nu sz N12 N21 ]Wu Mzz M12M21)T,

(Nll N22 N12 Mll M22 2Ml2) 5
N ( 11p ‘szp N12p Mllp AIZZp 2M12p) H
NC - (M}VN MJVI/V) ’
NE = (N3 Voo M V)™,

wp “vop v Tvp

NC - NVM)O’M)VMJG’ QV)T>

(

Npo = (Nop Nogp My V) "5
(
(

p* = (p b3 p*)" J

(2.51)

The suffix C is used to identify values at the boundary, while the asterisk signifies a prescribed

quantity. Note that the boundary conditions of the shell problem may be expressed by

components from

Uy = U§ and Ny = N§

(2.52)

where Uy is related to U by equations (2.32) and the first of equations (2.34), while N, is later
shown to be related to N by substituting equations (2.58) into (2.60).
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The strain energy % f f NT¢dA which is stored in the thin walled shell is calculated by

ff NTed4 = ff (N11€11+ Nag€9p + Nyp €10+ Ny €54
4

+ My K13+ Moy Kog + Myg Kyp + Moy K1) 0y 05 dE; dEy; (2.53)
substitutions from equations (2.18), (2.22), (2.42) and (2.47) show that this may be simplified to

JINTE d4 = ffA (V11611 + Nog€an + 2N1p €10 + My iy + My Koy + 2Mio Ryp) 0y g dEy AE,.  (2.54)
The external work f f p*TUd4 of the prescribed distributed surface loads pf, p5 and p* is given by

f f pFTUdA = f L (B3 Uy 448 Uy + 0% W) gty 0, dE, (2.55)

while the external work fN}’}T U dC of prescribed tractions N, N5, M5 and V} applied at the

boundary C'is
HN;*;TUCdC:f (NEU,+ NEU, + ME$, + VFW)a, do. (2.56)
C

The correct boundary conditions of the shell problem may be derived by equating fN}‘;TU cdC
with the work of the internal stress resultants and stress couples acting at the boundary C. Thus

f N Uy dC = f (N, Uy + N, Uy + My, + My o+ Q, W) t, do (2.57)
C

where, on making use of the equations (2.42) of the static-geometric analogy and the strain and
quasi measures of equations (2.35), (2.36), (2.38) together with equation (2.47), we have
N,, = Ny, cos?y + Nyysin?y + 2N, siny cos y,
N,y = — (Nyy — Npg) siny cos y + Nyy(cos® y —sin®y) -5 (}%1— }%2) My,
M, = M, cos®y + My, sin?y + 2M,,sin y cos y, (2.58)
M,, = — (My; — My,) siny cosy + My,(cos® y —sin?y),
Q, = Qcosy + Q,siny.
(Note that equations (2.57), (2.58) can be derived from equation (2.54) by substituting for the
strain and curvature changes in terms of the displacements, equations (2.17)-(2.22), and then

integrating by Green’s formula.) A substitution for the rotation ¢, is now made from equations
(2.34) so that a partial integration of equation (2.57), when equated with equation (2.56) thus

f NE UL dC = f NET U, dC, (2.59)

shows that the following conditions have to be satisfied on the boundary C, see equations (2.52),

N, Y _ Nt or U= U,
N+ = NE o U, = U2,
- (2.60)
M)V = M;l:' or ¢y = ¢:k:
10M,, L« s
Q,,—I-&;"EE_*——VV or W—W,}

10 Vol. 281. A.
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where U, UF, ¢} and W* are prescribed kinematic conditions. For concentrated loads V¥
acting in the direction of the normal z at the boundary C, it is necessary to satisfy pointwise

conditions M _ 7,
Vo D'

(2.61)

Turning to the question of variational principles suppose first, and ideally, that a set of
suitable Rayleigh-Ritz trial functions is available for displacements in U; over the whole of the
ith finite element so that it is feasible to proceed by straightforward minimization of the global
total potential energy. Denote the area of the ¢th finite element by 4;, its boundary by C;, etc.
The solution then follows by minimizing the functional II,

= z{ ffNTsdA Hp*TUdA f NET U,y d } (2.62)

where the line integral is taken only over the portion of C; where tractions N§ are prescribed.
The trial functions in U; necessarily satisfy kinematic subsidiary conditions, see equations (2.60),

UO’71+ - UCi-— = Oa

¢ Uvis orescribod ) (2:63)
Ug, = U*¥ if U* is prescribed,

the subscripts + and — referring here to the two sides of C;. In equation (2.62) it is understood
that the strain and curvature changes g, correspond with U; by using displacement-strain equa-
tions of the type (2.17) to (2.22) and, moreover, that the stress resultants and stress couples N;
correspond in their turn with &; in virtue of constitutive relations of the type given in equations
(2.48). The displacements U, are thus the only quantities which are subject to arbitrary variation.

As already indicated, however, it is usually impracticable in shell problems to satisfy all the
subsidiary conditions of equations (2.63) and it is, indeed, rather easier to widen the search for
trial functions to quantities other than just displacements and then to resort to some weaker
functional. Accordingly, let U, now denote a set of trial functions which interpolate the kinematic
conditions along the boundary C; and let U,; denote trial functions which partially describe the
displacements over the element. Also, let Nﬂi denote supplementary trial functions for stress
resultants and stress couples over this ¢th finite element. The functional Il which is associated
with this wide choice of trial functions may then be derived from that which is used in the
Hellinger-Reissner principle, thus

M=% {ff T +N%) (841 +8p;) A4, ffp*TUidAi
~ [y NE™ UG [ | (N2 ) Byt | (NEou+ Njeo) (Uos = Ui 4G, (2.68)

where the kinematic subsidiary conditions on U,; are relaxed so that it is linearly related in
some (best) way with Ug;, e.g. throught

U,c; = Ug; at points on C,
aC? (6 p } (2'65)

Ug; = U*  where U* is prescribed,
t The variational adjunct derived from Il is

8{% J\J‘_tgcizacidAi— pr*TuaidAi+ ngCi(UCi_UaCi) dci} =0

for arbitrary variations in U,;. This adjunct can be used to satisfy the subsidiary conditions in a best sense once
the rigid body components in U,, are equated at points on C;.
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such that U, ,; (and therefore also U,;) is completely determined in terms of Ug;; the subsidiary
conditions on the stress resultants and stress couples in Njy; are that they satisfy the partial dif-
ferential equations of homogeneous equilibrium (see equations (2.43) and (2.47)),

00ty Nygg; | Oty Nnm Oty Ooy “2 _
agl + agz ag ]Vl2/h ag A22ﬂz 1 Qlﬂi - O)

(2.66)

.....................................................................

over 4,. It is understood, moreover, that the strain and curvature changes &,; correspond with
the U,; by using displacement-strain equations of the type (2.17)—-(2.21) and that the stress
resultants and stress couples N; correspond with ,; in virtue of constitutive relations of the type
given in equations (2.48). Also, it is understood that the strains and curvature changes &, corre-
spond with Ny, in virtue of their constitutive relations. The quantities which remain subject to
arbitrary variation in equation (2.64) are thus Ny, and Ug,. The functional 11 becomes identical
with II for the global total potential energy, see equation (2.62), in the limiting case where
Nﬂ, = 0 and where the subsidiary conditions on the U, ; of equations (2.65) are satisfied every-
where on C;. In another limiting case where both U,; and p* = 0 then Il agrees with the
functional introduced by Pian (1964) in his assumed stress hybrid finite element model; this same
model is successfully employed by Allman (1970) in deriving a triangularly shaped finite element
to solve problems in the bending of flat plates.

The principles follow by rendering 811, = 0. Consider initially the consequences of arbitrary
variations 3N, over 4, this leads to the principle

f f SNF24;dA; — f SNFoi(Ugs—~U,op) dC; = 0 | (2.67)
for individual finite elements; it provides an Euler equation for the integrability of the strains and

curvature changes &4. Note that because of the subsidiary condition on NM, as expressed by
equations (2.66), this variational principle enforces

J‘fn%zﬂidé‘i‘ f Njoi(Ugi— Uyei) dC; = 0. (2.68)
The functional of equation (2.64) can now be reduced to
=32 { Jf (NE;+NE) (8, +4) A4, “ffP*TU@' d4;

f NETU ¢, dC, - f NLEdd, + f NZgi(Ugs = Uy ) dC; + f fp*T(Ui—umodA,-}, (2.69)

where both U,; and N 5; are regarded as known functions of the remaining independent quantity
Ug;. In examining the underlined terms in II%, we note that an Euler equation of the part
functional

:”(N + N5 (o +85) dd, ”p*’ru d4, f N*Tumdc} (2.70)
ensures that

- f f N zpdd; + f NZ:(Ugs — Uy 5) dC, + f p*(U;—U,) dd, = 0 (2.71)

10-2
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when the restored integrability of £, (see equation (2.67)) is acknowledged. The premise is that
the stationary value of I1%; may be identified with that of I1% so that the second principle may be
written

{U 2+ N5 (38,4 +84) d4, ffp*T&UdA f NETSUG G = 0. (2.72)

Note, however, that U, is not described over 4, and so the virtual work of the surface forces p* has
to be approximated. This can be achieved by introducing a column matrix N’;, of stress
resultants and stress couples, see equations (2.51), which satisfies the equations (2.43) of
equilibrium in the presence of surface forces p* = (pi ps p*)T. Then, by making use of Green’s
theorem, the equations (2.72) may be rewritten

{ f f T N, NI,) (55,452, dd; + f NI 5Up; dC, — ngNéTBUOidCi}=O, (2.73)

where N, is defined in equations (2.51).

3. THE GENERAL DEVELOPABLE SURFACE

Mention is made in the Introduction that some special analytical techniques remain to be
evolved before the practical and efficient finite element analysis of shells becomes a reality. In
first developing these techniques it is sensible to simplify matters as much as possible and this is
the reason why attention is to be specialized to developable surfaces, sometimes called surfaces
of zero (Gaussian) curvature.

The finite element method is basically a piecewise application of the Rayleigh—Ritz process.
The conditions of the process are formally satisfied by the selection of (admissible) trial functions
which are complete in the sense that the strain energy norm converges in the mean as the finite
element mesh is made progressively finer. Now, the four basic states of static response, which are
described in the Introduction, correspond to intrinsic levels of comparative magnitude in the
bending and stretching contributions to the strain energy 3 j f NTzd4, equation (2.54). Thus,
an arbitrary choice of trial functions in displacements U = (U, U, W)™ which, nevertheless, meet
the requirements of the membrane actions of state (I) leads to

ff My 3y + Mo Kop + 2My5 Ky p) 0 2o A€y A€y = 0{ f NngA} (3.1)

where the non-dimensional parameter £, defined in equations (2.50), is very small with a value
somewhat less than 105 for the thin walled shells of first approximation theory. On the other
hand, the inextensional solutions of state (II) require special displacement trial functions which
are complementary function solutions to the partial differential equations which govern
€11 = €92 = €15 = 0. For these trial functions, signified by inext.,

f (M Kyy + Mg Koy + 2Myp Ryp) 08 0y, dE, dEy = j (N—T g)inextrdy, (3.2)
A

The six trial functions of state (III) which describe an arbitrary rigid body movement of the
shell, contribute nothing to the stresses or strains so that

f f (NTZ)xp)d4 = 0. (3.3)
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Lastly, the nature of the transcendental trial functions which describe the simple edge effects of
state (IV) is such that they are not susceptible to decomposition into separate inextensional and
membrane components.T They contribute to another intrinsic level of comparative magnitude
in the strain energy where

ff (Niy€11+ Nagas + 2N;56,5) %0 0y cry A€, dE,
4
== ffA (Mo kyy + Mag Kap + 2M,, Ky 5) €€ 0ty o, AE, dE,.

It is evident that (so called) general solution processes for shell problems are inadequate for
purposes of practical computation when they cannot exhibit strong recovery qualities at each of
the above mentioned intrinsic levels of comparative magnitude. It is appropriate, therefore, to
make clear that the present objective is limited to the recovery of those smoothly varying distribu-
tions of stress and strain which can be piecewise described through the basic states (I), (II) and
(IIT) of static response. In other words, questions of edge effect are specifically excluded from
present consideration.

Complementary function solutions to the partial differential equations which govern inexten-
sional deformation are readily available only for certain shell shapes, such as the developable
surface. It is the relative simplicity of this analysis which presents the prime motive in so special-
izing the investigation from the arbitrary shell. Note that if shell problems are solved by selecting
trial functions for stress resultants and stress couples, e.g. through the stress functions of equations
(2.44), it is then necessary to consider complementary functions which recover purely membrane
actions where the stress couples M;; = My, = My, = 0. The theory of these purely membrane
actions is intimately related to inextensional theory by the static-geometric analogy. For these
trial functions, denoted by memb.,

ff (N €11+ Nagop + 2N, 5 615) memdI g, o, AE, dE, = ff (NT g)memb)d 4, (3.4)
4

The purpose of the present section is to supply the working formulae for developable surfaces
which describe in general terms the inextensional deformations, membrane actions and
particularized strains, rigid body movements and sensitive solutions.

3.1. Specialization of results

The developable surface in a lines of curvature coordinate system is identified by
1/R, = 0, (3.5)

where the lines £, = constant are the generators; the Codazzi relations of equation (2.11) then
show that
ay=a,(§) and  Ry(£y, &) = s Ryy(£) (3.6)

which introduces R,, as a function only of £,. Since the line clement along a generator (see
equation (2.8)) is
|dr| = oy (&) d&y,
it is clear that £, may always be identified with arc length so that if we put
;=1 (3.7)

t Itis observed, for example, that in a shell with developable reference surface where the lines £, = constant
are the generators, the curvature change «{}***” = 0 and therelore cannot contribute to x{?,
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there is no ensuing loss of generality. The first of each of equations (2.5), (2.6) and (2.10) reveals
that the form of equation (2.3) for the position vector of the general developable surface is

r = 1o(82) +&1t:(£2), (3.8)
where ¢, is, as already described, the unit tangent vector in the £, direction. The Gauss relation
f equation (2.12) shows that
of equation ( ) shows (€1, £a) = tag(8a) +E1%a1(E2), (3.9)
where, in view of the requirement from equations (2.10) that
0, _ 100,
08, 0,08, *
L. ] dt;  dr,
it is necessary for aczoaz; =daug Z, (8.10)
It follows from equations (2.6) and (3.8)—(3.10) that
_|dry _|dt
to(&2) = dg, and  ay(£,) = dz,|’ (8.11)

where one of oy, &y, may turn out to be zero, but never both simultaneously.t The unit tanget
vector ¢, in the £, direction is given by

1dr 1 dr 1 dt
t,(6) = — 5 =— 5 andfor =— 2 3.12
2(£) aydfy oty d, / a9y déy ( )
Consequently, the unit normal vector n of equation (2.9) is
n(&) = t1(8s) x £5(&2)s (3.13)
while the function R,, of equation (3.6) is given by
i _dn _ndh (3.14)

R dg, 2T TMaEy

In the alternative form for the position vector r, see equations (2.13) and (2.14), the com-
ponents p,, p, and p, become
pr = (fo+&ity) -ty = pro(&s) +& with  pyo(8y) = 1oty
pa(8s) = (ro+&1ty) ty =1ty (3.15)
Pale) = (ro+&1ty) 0 =1y,
where attention is drawn to the fact that p,,, p, and p, are here functions only of &,. The first

derivatives of these components with respect to the coordinate £, are required in the sequel.
When equations (2.10) are specialized for developable surfaces so that

dt

Eg"z = U1 by,

dt, n

—= = — 0ty — 5, 3.16
d&E,~ TRy, (316
dn _ 1,

dg; Ry’

+ In fact, &y, = O for conical surfaces with vertex at £, = 0, while &y, = 0 for cylindrical and plane surfaces.
Both a,, and o, are non zero for the general developable derived from the tangent surface to a curve.
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the required derivatives are readily found to be

0 _ 4 ,
dZ, 21P2

dpy Pa

—F = Qlgg — & — 3.17
dg, 20 21010 Roy’ ( )
dp, _ Pe

df, Ry

The rotation components in the £;, £, lines of curvature coordinate system for the developable
surface are, see equations (2.17),

ow
¢1 = agl ’
U, 6W)
= =2 3.18
b e (Rzo /)’ ( )
1 GIA ol,
¢7L = sz( agz tta Qg =7~ ag +0‘21U2)a
while the strains are given by, see equations (2.18),
o,
€11 = 57"
11 agl;
ol, w
€op = %y (ag + gy U1 RZO) (3. 19)
1 (ol ol,
€12 = €1 = 2o, \OF, o 23E, — % Uz)
The curvature changes are obtained from equations (2.19) and (2.21), they are
0
Kn = 5?1
0
Koo = (6?2+“21¢1) (3.20)

P

__I_._..__.._

— 1 (0
R = (¢1

0y

a1 Pa

+ oy 6?2

)

The equations (2.23) et seq. were developed in a general way so that the behaviour of the
reference surface can be studied along arbitrary orthogonal curvilinear coordinates v = constant,
o = constant which are not necessarily coincident with the lines of curvature coordinate system.
These equations may be simplified for the developable surface. They are particularly appropriate
to situations where the geodesic curvatures —£, and £, of equations (2.29) are both zero, i.e.
where the angle y between tangent vectors £, and ¢, is determined in such a way that

0 0 . 0 . 0

= (01 €C08Y) — 55 (g SINY) = = (¢4 SINY) + =5 (g cosy) = 0, 3.21

agz( 1 CO 7) agl( 2 7) agz( 1 7) agl( 2 7) ( )
which becomes, after substitution from equations (3.7) and (3.9),

—sinyéaglz—ocmsinj/—oczcosyaa—g1 = cosyaa—gz+oc21005y—oczsinyaa—gl = 0. (3.22)
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Thus, for both £, and £, to be zero the angle y has to be determined so that

y(&2) = —fa‘zl(gz) d§, + constant. (3.23)

The coordinates », o then form an orthogonal geodesic coordinate system which appear as
rectangular Cartesian coordinates when the reference surface is developed onto the plane. It is
only on developable surfaces that both geodesic curvatures — £, and £, can be made zero such
that equations (2.29) imply

Oa,[00 = Oa,[Ov = 0. (3.24)

The line elements along the orthogonal network of geodesics are therefore «,(v) dv and «, (o) dor
so that both » and o may always be identified with arc length and we may put

“V=“0'

=1 (3.25)
without loss of generality.

Two cases are worthy of special note because of their importance in engineering applications.
Consider first the situation where the reference surface lies on an arbitrary cylinder so that, in
equation (3.9),

ap(8a) = da0(£2), 1€ ag(§) = 0. (3.26)

Equation (3.23) then reveals that the angle y is given by
vy = constant, (3.27)
while the first of equations (2.25) shows, for dv = 0, that the relation
£ = —oagétany (3.28)

defines geodesics which pass through the origin of coordinates §,, £, = 0. Moreover, the integral
of the second of equations (2.25) shows that the arc length o of these geodesics, as measured in
the positive direction from the coordinate origin, is related to £, and &, by

£, = —osiny, ayé, = ocosy. (3.29)

The other important situation occurs when the middle surface of the shell lies on an arbitrary
cone with vertex at §; = —£], £; > 0, so that in equation (3.9)

ay(£1,82) = (E1+E1) @ar(£a), 1€ agg(En) = E1oan(£r). (3.30)

Let us again consider the geodesics which pass through the coordinate origin &;, £, = 0. The
angle v now depends upon the coordinate £,,

33
y(&2) = ')’,_fo %yy dEs, (3.31)

where 7y’ is the angle between the unit tangent vectors £, and #, at the coordinate origin. From the
first of equations (2.25) we obtain, for dv = 0, the condition that

(E1+E&1) cosy = Ercosy’,  (E1+&7) >0, (3.32)

which defines the geodesics. Similarly as above, the integral of the second of equations (2.25)
shows that the arc length o of these geodesics, as measured in the positive direction from the

coordinate origin, is
o =—(§+&)siny — £ siny’. (3.33)
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Returning now to the general developable surface, the quantities R,, R,, R,, of equations
(2.30) for orthogonal geodesic coordinates » and o become

1 sin®y 1 cos?y 1 _ sinycosy (3.34)
Rv “2R20’ Ra “szo’ var “2R20 '

while the list of slopes, strains and curvature changes of equations (2.34)-(2.36) simplify to

sin oW _Usiny W
o, = 2Ry (U siny+ U, cosy)—a—v_ P
_ cosy ow Uzcosy__glfl/ ’
b, = %Ry (U,siny + U, cosy) — o~ a Ry o (3.35)
_ 130, 3G,
¢”—§ v do)’
. _9_(_]_,,+Wsin2y
P agRyy
aU Wcos?y
_1(3U, oU, 2Wsiny cosy,
o —‘(—a‘;+ a ‘“TR—“—)
and finally
0g, ¢nsmycosy
K = ¥ agRyy 7
0¢, ¢,sinycosy
gr = _a(-r'— 062R ) (3.37)
= ¢ a¢cr ¢n 2n) i
Ky = —{ v 4—052 5, (cos?y —sin%y) )

3.2. Inextensional deformations

The &,, &, lines of curvature coordinate system provides a suitable basis to examine the inexten-
sional deformations of a developable surface.

The strains 6,4, €55 and 6,5 = €5, of equations (3.19) must separately vanish for inextensional
deformation to occur, satisfaction of the resulting differential equations then requires that
displacements Utnext) — ({{inext) [{imext) [{/tnext))T he expressed in the form

Ul(lneXt') = Ulo(gz),
Ugtnext) = Uyo(£,) + 61 Uni(£2)s } (3.38)
Winexd = Wi(£,) + £, Wi(£s),
where Uy(&2) = f (0ta1 Upg— gy Upy) &,
dy,
Wil = = Rup (S22 +om U, (3.39)
dy,
I/Vl( ) R20 dgzl

1 Vol. 281. A.
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Inextensional deformations of a developable surface may therefore be characterized in terms of
two arbitrary functions U,y (£,) and Uy, (&,). The Utlinext) of equations (3.38) are seen to be linear
in the coordinate £; and, in selecting the trial functions for the Rayleigh-Ritz process, considera-
tion may be given towards a choice of Uyy(&,) and Uy, (&,) such that the component Uginext) jg
described entirely as a polynomial. It is evident, however, that the remaining components
Ufinext) and WWnext) may not be then described in polynomial terms except in special cases such
as where Ry, @y and a,, are constant. ‘

When equations (3.38) and (3.39) are substituted into equations (3.18) it is found that the
rotations which accompany this inextensional deformation are interrelated by

¢(7ibneXt')(€2) = Uy,

. d ¢(inext.)
(inext.) =R L3
¢ 1 (g2) 20 d gz B

(3.40)
0 d¢(inext.) ¢(inext.)
— (., plinext)y _ 1 n
agl( 2¢2 ) dgz R20
These show that the rotation component ¢§"°*t) must have the form
. . d¢(inext.) ¢(inext.)
(inext.) £,E,) = ¢20(§2) +& ¢21(§2)’ with = 1 42 . 3.41
o S %g0(8a) +E1001(82) Pu(&) dé, Ry ( )
The curvature changes of this inextensional deformation are, see equations (3.20),
K(liileXt’) =0,
. 1 a¢(inext.) .
,linext.) — _( 2 a (lnext.))
. m\ " ag, et (3.42)
. a¢(inext.)
E(mext.) — 2
12 agl s

In the conditions for convergence of finite element displacement analysis, reference is made,
see Introduction, to particularized responses for use as trial functions in the piecewise description
of general curvature change. The above equations confirm, however, the statement that arbitrary
states of constant curvature change cannot be sustained in shells. Moreover, it is seen to be
generally a matter of considerable difficulty to find functions Uyy(£,) and Uy, (£,) which provide
constant values for just «§§°*% and &{e=t) in the developable shell; a simpler criterion is given in
the sequel for particularized responses referred to as sensitive inextensional solutions by Morley
(1972) and Morris (1974).

The stress resultants N{jext), Nffext) and Npext) of inextensional theory do not necessarily
vanish. They cannot be determined from the constitutive relations (2.48), instead they follow
from considerations of equilibrium, either from equations (2.43) or by way of stress functions
x{next), yfnexts and tinext), Consequently, inextensional solutions may not satisfy exactly all the
equations of the agreed first approximation shell theory. They are, nonetheless, perfectly adequate
when taken in comparison with exact solutions to the agreed first approximation shell theory as
may be confirmed by appeal to equations (2.50) or their static-geometric counterpart.
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3.3. Membrane action

In finite element analysis by the displacement method, there is generally no need to dwell
upon the role of stress resultants as derived from membrane theory although instances do occur
where it is practicable to select trial functions U = (U, U, W)T which allow direct recovery of these
actions for what may be regarded as the more basic distributions appropriate to zero and to
specific surface forces, e.g. appropriate to such as the surface force which occurs in a pressurized
vessel. One such instance occurs in the technologically important circular cylindrical shell with
uniform wall thickness and uniform material properties; other shapes of shell may require varia-
tion in wall thickness or material properties to achieve this recovery in a practical way.

Study of purely membrane actions assumes greater significance, however, in applying the
variational principles of the assumed stress hybrid finite element and similar models (see Pian &
Tong 1969), and in applying the principle of minimum complementary energy. For this reason,
the working formulae which describe these actions are listed for the developable shell. The static-
geometric analogy with inextensional theory facilitates the preparation of this list. In a purely
membrane action the stress couples M,,, Myy, My, M,, as well as the out of surface shears @; and
@, are assumed to vanish.

The correspondence of variables in the static-geometric analogy is expressed by equations
(2.42), (2.44) and (2.46). Equations (3.38) and (3.39) then show, in the absence of surface forces
p* = (p¥pip*)T, that the purely membrane actions in a shell with a developable reference
surface can be expressed by stress functions y{memb.) | y{memb) apnd yrmemb.) which have the form

XD = x14(£s),

XSmemP) = wo0(Ea) + £ X (), (3.43)
yimemb.) — 1/f0(§2) +§17/’1(§2)a

where X10(82) = f(a’Zl X20 — %20 X21) A&,
Vo) = — Ry (C(lig +0‘21X10), (3.44)
hlf) = - Roo G52,

These membrane actions are seen to be characterized by the two arbitrary functions y,,(£,) and
X21(&5). Formulae which express the stress resultants Nfpemb)| Nmemb) and Ngremb.) i terms of
the stress functions may be written down from the static-geometric analogy to equations (3.18)
and (3.20); subsequent appeal to the equations (2.43) of equilibrium allows the determination
of extra contributions which are caused by the surface forces, thus

0 1 X(memb.) aw(memb.) dX(memb) a]

(memb.) — __ — 2 _ -
A L it S RS e [ SNV EN AL
Nz(lznemb.) — zp*
_ 0 1 X(memb.) aw(memb.)
N(memb.) — ( 2 _ ) +7 ,

1 6§1 o\ Ry 08, P
where R, = a,R,, (see equations (3.6)) and (3.45)

1 OR, p* '
I, = "a_%f‘xz( az +062[)2)d§1 (3.46)
11-2
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The constitutive relations of equations (2.48), taken in conjunction with equations (3.19),
provide )
e(lnlaemb.) — _1_ (N(]lnemb.) _ VN(memb.)) — aUl(memb) \
Eh 1 22 agl ’
1 1 [QUmemb.) W/ (memb.)
6(2151emb.) — E_‘h (]Vérznemb.) _ V]vl(llrnemb.)) — 072 (Lagzﬁ_ + oty Ul(memb.) + ,______R_Lr ) , (3_47)
1+ V) _ 1 ({1 QU(memb) 0 U(memb.)
g{memb.) — ( N(memb) — _{_ 1 4 Oy (—2 ,
12 Ep 1 2\, 08, 206\ ay
and these may be integrated to provide Umemb) = ({/{memb. [j(memb.) J4/(memb)T where
Ul(memb.) — fe\lr{lemb.) dgl’ W
1 1 a U(memb.)
(memb.) — el (memb.) _ — 71
Uy 2 f (2o - - o )t (3.48)
oU memb.)
W (memb.) — R20 (azeggemb.) _ _%T —ay Ul(memb.)) .

The displacements Utmemb) are particular integrals of equations (3.47), they require to be
augmented with complementary functions Utnext) from the inextensional deformations of
equations (3.38) where €, = €35 = €5 = 0.

Purely membrane action solutions may not satisfy exactly all the equations of the agreed first
approximation shell theory. Like the inextensional solutions discussed earlier they are, nonethe-
less, perfectly adequate solutions when taken in comparison with the exact solutions to the
agreed first approximation shell theory.

3.4. Rigid body movement and sensitive solutions

The vector Ub) which describes the rigid body movement of a particle on the shell reference
surface can be described in terms of a constant translation vector 4 and a constant (small)
rotation vector £ by

Uerb) = 4+ Qxr, (3.49)
where A =ce +ce,+ c3e3,} (3.50)
Q =c,e, +cse,+cges, '

with constant coefficients ¢;, ¢y, ..., ¢5. All these vectors may be defined alternatively in the £, §,
lines of curvature coordinate system by

A= 0.t +68t,+6,n,
Q =—wyt;+w,t,+o0,n, (8.51)
Utb) = U,ebIg, 4 UyrdIt, + Webin,

see also equations (2.15) and (2.16). The translation and rotation components d; and w; are
functions only of §, and may be derived in terms of the ¢y, ¢, ..., ¢s from

01(8s) = A'ty,  wy(§,) = 2,
03(8s) = Aty  wy(§5) = — 82y, (3.52)
8,(E) = An, wv,(&,) =Qn.
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After substituting from equations (2.13) and (3.15) into (3.49), the rigid body displacements
Uab) = (Ufrd) Urd) Web)T may subsequently be expressed in terms of these &; and w; by

Ufrd) = UEMI(E,),

Ugd) = U,_g(r)b)(gz) + & UEPI(E,), (8.53)
WD) = WEDI(E) +£, Wﬂb)(gz),
where UfP(Es) = 61+ pp1—
(rb)(§2> = 6 +pn(‘)2+p10a)m
UiiP(&) = 0y, (3.54)

WEPIH(Es) = 0 — P10 @1 — P2 s,
WP (Ey) = — ;.

Equations (3.38) and (3.39) show that the general inextensional deformation may be charac-
terized by two functions Ugrext)(£,) and Ugrext)(&,) and, since the movement of the whole shell
as a rigid body is just a special case of inextensional deformation, the rigid body movement may
also be characterized by two functions U§™®)(&,) and U§P)(&,).

Now, piecewise representation of the curvature changes throughout the shell requires the
selection of smoothly varying particularized responses from inextensional theory, section (3.2).
The ‘smoothest’ of such responses are described in the literature as sensitive inextensional solu-
tions. They are best derived by approximating the rigid body movement over a small region by
an inextensional deformation Ugrext)(£,) and Ugpex®)(£,) where, say, U§P)(€,) and U§PI(E,)
are expanded about the line £, = 0 in terms of a truncated Taylor series,

. di Uk b)]Ea=0 g:‘
UL (inext.) — _A_ ] (_2) ,
ORI

|
d7 U@ )] Ee=0 é, (3.55)
(jz(llnext-)(g2) =j=0§2 [——d—zz—] (3_2:).

The two particularized responses best suitable for piecewise representation of curvature
changes throughout the shell, and hence for convergence in the finite element method, are given
by the first term, from each series, which provides non-zero curvature change.

3.5. Particularized strains

The discussion on practical conditions for convergence in the finite element analysis of shells
(see Introduction) draws attention to the fact that arbitrary choice of (low degree polynomial)
displacement trial functions in U = (U, U, W)7 leads to significant membrane actions where the
curvature changes k,,, kg9, K15 are negligible. Smoothly varying particularized strains are required
for each of €, €5, and €, in the chosen coordinate system, if convergence of the piecewise
representation is to be assured for general states of membrane response calculated by the finite
element displacement method. The effects of (the negligible) curvature changes can be ignored
in these considerations.

Strains €y;, €55, €15 in the £, &, lines of curvature coordinate system for the developable surface
are given in terms of the displacements by equations (3.19). Smoothly varying particularized
responses in this coordinate system are given by

U= ¢ 18 +¢ f“ngzdgz‘*‘ 2¢585,
U, = c22+ 26,85, (3.56)
W = — Ry, U,
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where ¢, ¢5, ¢; and ¢, are constants. This gives rise to strains

. €11 =01, €gp = %y, €15 = (63 + g Cy) [0l (8.57)
where it is recalled that
oy = Olgg(£g) + &1 %01 (£5) ' (8.9bis)
for developable surfaces.
Rather more satisfactory particularized responses are derived from strains ¢, €,,, €,, in the
v, o geodesic coordinate system, equations (3.36). Here we write
U, = ijv+260,
U, =cy0+2¢4v, (8.58)
W =0,
where ¢y, ¢5, ¢; and ¢; are further constants. This gives rise to consfant strains
€, =01 €Eyp=Cg, €, = C3~+Cq (3.59)

just as occurs in problems of plane stress. Equations (2.35) can be used to transform these into
strains of the lines of curvature coordinate system but, in this connexion, it should be noted that
equation (3.23) shows the angle y to be constant only when e,; = 0, i.e. as for arbitrary cylinders.

4, THE CIRCULAR CYLINDRICAL SHELL

Application of the formulae just derived for the general developable surface is now demon-
strated in the development of finite element methods specifically for circular cylindrical shells.
It is emphasized that attention is restricted to the smoothly varying distributions of stress and
strain which can be piecewise described through the basic states (I), (IT) and (III) of static
response which are described in the Introduction.

Central to the finite element development are the trial functions in U,,, see equations (2.51),
which interpolate the kinematic conditions along a geodesic boundary of the (ith) element. It is
an unfortunate fact, however, that casual embodiment of the formulae of § 3 leads to numerical
difficulties when evaluating the component trial functions in U,;. In consequence, it is necessary
to express these trial functions in terms of special transcendental functions defined along the
geodesic.

This interpolation is then used in the guise of Hermitian interpolation to develop a lines of
curvature rectangular finite element, which is distinguished from all other known shell finite
elements because it directly recovers (I) membrane actions, including the particularized strains;
(II) four sensitive inextensional solutions; (III) arbitrary rigid body movements, and satisfies
all inter-element continuities as are demanded by the underlying principle of minimum
total potential energy.

It is recognized that useful application of this rectangular finite element is limited to special
problems where the boundary contours of the shell coincide with the lines of curvature. Conse-
quently, attention is next given to the development of a more practically useful finite element
which is triangularly shaped with each side coinciding with a geodesic line. The possibility of
development by using Pian’s (1964) assumed stress hybrid finite element model is first discussed
before making recourse to the more versatile variational principle introduced in §2.4.
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Problems in circular cylindrical shells are so frequently occurring that they have attracted
an almoststandard notation. Thus, itis more usual to work in terms of x, & and s rather than §;, £,
and o. Accordingly, let

gl=Rx, 0-=R53 Ul“_‘Uac: U0-=Us’ €11 = €ga» } (4 1)
‘52 = 0: Uz = %, €39 = €gg, C€tC.

where R is the radius of the reference surface and x, 6, s are non-dimensional coordinates. The
position vector r to the reference surface is given by (see figure 2)

r = R(sinfe, +cosfe,+xe;) (4.2)

so that the vectors r, and ¢, of equation (3.8) are

ro = R(sinfe, +cosbe,), t,=e; (4.3)
d¢, /
Rdo W dg,
ez Uy Rdx

U

€

i

coordinates on shell surface

Ficure 2. Notation for circular cylindrical shell.

The modulus |¢,| = 1 as is required and, from equations (3.9) and (3.11),
ag = oty =R, a5 =0. (4.4)
The unit tangent vector #, in the 6 direction, equation (3.12), is
t; = cosfe, —sinle, (4.5)
while the unit normal vector to the reference surface, equation (3.13), is
n =sinfe, +cosle,. (4.6)
Thus, the function Ry, of equation (3.14) is the unit constant,
R;y =1 (sothat Ry = R), (4.7)
and the components p,, py and p,, of equations (3.15) are

Pz = Rxa Pzo = Po = 0, Prn = R, (4-8)
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so that when the position vector r of equation (4.2) is expressed in terms of the moving triad

t,, toand n it is simply
r = R(xt,+n). (4.9)

The rotations, strains and curvature changes in the x, 6 coordinate system are, see equations
(3.18)—(8.20),

Rey = Ua_%}/’ (4.10)
rp, = 5(-F2+ ).
Re,, = %, Ry = —%;/,
Reyy = %)+ W, RPkgy = “%/"'%_gg’ (4.11)
Reyy = %(%Jf%%) Ry = 5 51 T
The equations (2.43) and (2.47) of equilibrium reduce to
agf‘“raév;”% 6%%04_% agfgo — _ Ry, (4.12)

The expressions for the stress resultants and stress couples in terms of arbitrary stress functions
Xa» Xo and ¥ are, see equations (2.42), (2.44), (2.46) and (4.11),

02 0 0
Rszw = %-%’ RMxm = '5%9‘*'!0,
02 0
R2Nyy = 5—%, RMyy = ”ai\{f,: (4.13)
7 0% 30y, 10x, 1 (aXx aXo)
2 — ¥ 20~ Az = _—[ZA=z ZAE
RNy = ~30pT1%x 2000 Meo="3\30 T )

and these provide solutions to the equations of equilibrium (4.12) when the surface forces
5=t =p* = 0.
The inextensional displacements Utinext) are given by equations (3.38) and (3.39) and when
hese are specialized for the circular cylindrical shell they are

Uginext) = ] (6),
Uéinext.) = Uoo(ﬁ) +Rx%1(0):}
W tnext) — W;,(ﬁ) +Rxm/1(0)’

(4.14)
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where U, (0) = —RJUeldﬁ,
dU,
%(0) = dgo,
_dU,
o) = -2,

with Uy (0) and Uj,(0) as arbitrary functions.

145

(4.15)

In a purely membrane action the stress functions in the circular cylindrical shell are, see

equations (3.43) et seq.,
XS = Xa0(0),

Xgmemh) = Xoo(e) +RxX01(0)’
Yimemb) — o (0) 4+ Rxyfr, (6),

where Xmo(a) = _RfX(ildaa
_ dxso
val8) = -0,
_ dye;
¥a(6) = -Xo,

(4.16)

(4.17)

with ¥,0(0) and yx,,(0) as arbitrary functions. These stress functions, together with surface forces

p¥, p¥ and p*, produce stress resultants

Q. /2 ol
R2N(memb) — ~55 (2)_62 + 1) (Xg0 + Rxxg1) —R2J‘(6§ +Rp;") dx,

RzNéznemb.) — R3p*’

do?
*
where I, =— Rf (957 +pf9") dx.

The strains in this purely membrane action

_ 2
RANfpomD) = (ii— + 1) Rxo1+ R,

1
eggemb )= E (Nggznemb.) _ V]Végxemb.)) ,

1
eggemb.) — _Eil ( ]Vo(gnemb.) _ V]Véglemb.)),

1+7) &
G%emb.) — ( o) Afgggnemb.)’

give rise to displacements Utmemb)

Ugnemb.) — Rfeggemb.) dx’
1 aU(memb.)
Uémemb.) — Rf(m_;(gzrgemb.)__‘7e ma@ ) dx,
U (memb.)
(memb.) — (memb.) __ 70
W R T )

see equations (3.48) and subsequent sentence.

12 Vol. 281.

(4.18)

(4.19)

(4.20)

(4.21)

A.
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The rigid body movements are obtained by substituting equations (4.3), (4.5), (4.6) and (4.8)
into equations (3.49)—(3.54). Rigid body movements are special instances of inextensional
deformation (see equations (4.14) and (4.15)) and so may be characterized by two functions
as follows

UEPI(0) = ¢1c080 —cysin 6 — Rcﬁ,} (4.22)

U (0) = ¢48in 0 +czcos 6.

4.1. Interpolation of kinematic conditions along a geodesic line

Equations (2.51) define column matrices U and U respectively for the distribution of dis-
placements in the interior and for kinematic conditions on the boundary C,

U= (UG, }

U = (U, U, W) (+:29)

The matrix U is related to U through equations (2.32), (2.34), (4.1) and (4.10). For the circular
cylindrical shell, on C,
U, = U,cosy + Uysin vy,
U,=—U,siny+Ujcosvy,

oWy . ow
Ro, = (U(,-—~a—0)smy—acosy.

(4.24)

In the variational principles described by equations (2.67) and (2.73), U, denotes trial func-
tions which interpolate kinematic conditions along the boundary C; of the ith finite element.
The interpolation must be capable of recovering directly the particularized strains, sensitive
inextensional solutions as well as arbitrary rigid body movements. Let us begin by writing these
expressions out in detail.

Complete expressions for the rigid body movements are obtained by substituting equations
(4.22) into (4.14) and (4.15), they are

UFP) = ¢y + R(cqcos 0 —cysin 0),

Ugb) = ¢, cos 0 — cy8in 6 + Rx(cy5in 0 + ¢4 cos 6) — Reg,

Wab) = ¢, sin 0 + ¢y cos @ — Rx(cy cos 0 — ¢z sin 0),
RPTD) = R(cqcos O —czsin 0) cosy — Regsiny.

(4.25)

The first few terms of the Taylor series expansions given in equations (3.55) provide the sensitive
inextensional solutions. Substituting from equations (4.22), we obtain
Ui (0 =l =40 -0 Ry

. 4.26
Usinesta(0) = 0+ ¢, (4.26)

and these characterize inextensional approximations to the rigid body movements. The terms
which belong to the constants ¢; and ¢; are the most important for they provide constant particu-
larized values of the curvature changes x§3*<* and «{i§*x); the terms which belong to the con-
stants ¢; and ¢ provide interrelated linearly varying expressions in the curvature changes. Note

1 The actual expressions for these curvature changes are
Ryt = — ¢ 0— ¢, + Rxcy,

RZE::;ext.) - R0;0+Cé-
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that «{next) = 0, Substitution into equations (4.14) and (4.15) now provides
Uinesty = o+ R {41~ 10 0}
Ujnext) = ¢ (1 —362) — 30 + Rx(cy 0 + c5) — R,
Wnext) = ¢1 6 + ¢y — ¢y Rx,
Rgfimext) — [yfmextgin v — ¢ siny + Rey cosy,

(4.27)

where ¢ arises as a constant of integration.

Now, the circular cylindrical shell with uniform wall thickness and uniform material properties
provides an instance where it is practicable to directly recover, in analysis by the displacement
method, the more basic distributions of purely membrane actions appropriate to both zero and
specific surface forces, e.g. such as is caused by internal pressure. Accordingly, consider stress
function components analogous to equations (4.25)

yimemb)(0) = ¢(1 — 462) —6’2/0—130:;',} (4.28)

XEo(6) = 40+,

and substitute into equations (4.16) and (4.17); consider also the membrane actions which
correspond to uniformly distributed surface forces p¥, p} and to linearly varying surface forces p*

here .
e P =ph, D5 =Dk ¥ = p¥+upt +0p} (4.29)
with p¥,, pk, p&, p¥ and pF constants. The stress resultants are obtained from equations (4.16)
0 (4.19), REN@omb) — 0+ ¢ — o R — Roapio,
RENGpomD) = R3(p + xpf + 0p%), (4.30)

RN = R(c}0-+¢) — Box(piy+1).

Note that neither the inextensional displacements of equations (4.27) nor the stress resultants
of equations (4.30) are exact solutions of the agreed first approximation shell theory. Exact
solutions require the addition of small order terms as follows

. k ’ 4
U:gmext.) 4 8(1 — V) {1201 x0 + 3(1 — V) Cy Rﬁz}:

. k , /
Ufnest, _*_W__V) {2c1%% + 2(1 —v) ¢y Rx0}, (4.31)

k , ,
T/ (inext.) _ m {12v¢10 + 2(1 — ) cy R},
and
R2N{memb) ke ()4 y Rx, \

Rz%%nemb.) + 0,

_ 3
R2Nfemb) ___3kR___x) (3403"0 St sz ) )

(4+9k
RMmemb,) 2—(1-% 3vcl 0, (4.32)
RMpomv) = 2(1’“+ 5340,
12-2
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where the small parameter £, see equations (2.50), is defined by

k = h?*[12R2. (4.33)
The small order items listed in equations (4.31) and (4.32) play a relatively inconsequential réle
in first approximation shell theory. The stress resultants and stress couples of equations (4.30),

(4.32) give rise to the following displacements, exact according to the agreed first approximation
shell theory,

Vs g, o  GiR
U fmemb.) =m[01x0+€2x+ 48 {8(1+V) 02_-(4+k) x2}
" 3 T
+ 3ch (1+) e_% (2%, + 2vap + va®p} + 2vx0p%) |,
1 ] s R ~
Uémemb.) — REh[_i{sz_S(l —V) 62}4——52—' (1 +v)x (4.34)
R3 24% 2p% 11
_W{S(l+V)xp,,0+(8+4v+3/c)xp2}_.
Wmemb) — _L_ [_fl_ll (8 —v) 0 — e} +@ (44 k) x + R3(vaply + pi§ + xpf +9P*)]
REL| "2 2Ty S |

Equations (4.31), (4.32) and (4.34) are also exact in the Sanders—Koiter theory of circular
cylindrical shells for which more comprehensive details are given by Morley & Merrifield (1974).
The geodesic line which defines part of the boundary C; of the ith finite element and which
passes through the origin of the surface coordinates x and 0 is given by equations (3.29) as
x = —ssiny, 0 =scosy, (4.35)
where the angle y is constant and s is measured along the geodesic line, see equation (4.1). The
interpolating trial functions in Ug; are now determined so that direct recovery is secured of
equations (4.35), (4.27), (4.31), (4.34) as well as of particularized strains appropriate to equations
(3.56)—(3.59). This more than fulfills the requirements which have been laid down to ensure
convergence in a piecewise representation. Thus
U, = a;+ oy s +ag5% +ayp8in 0 + ot 5 cos 0,
U, = oc4+oc;5s+oc6s2—ocgsin0+ocm cos 0 +x( —ay,co8 0+ ay38in 6), (4.36)
W = a, + ogs + g cos O + oty sin 0 + x( — 5510 0 — a5 cos 0),
R}, = oty; + (15810 0 + aq5c0s 0) cos y + (o655 + ags?) siny,
where ay,a,, ..., 2,5 are constants. The rigid body movement of equations (4.25) is directly

recovered when the substitutions
¢ =y, Req= a3,

Cy =0y, Reg=—0y, (4.37)
¢g =0y, Reg=—oy,
are made. Moreover, with the aid of equations (2.32), (3.36), (4.1), (4.4) and (4.7), the strain ¢
along the geodesic line is found to be

Re,, = — (otg + 2a45) siny + (a5 + 2044 5) cos y + (ot; + g s) cos?y. (4.38)

Note that Re,, = 0for four linearly independent and non-trivial combinations of the constants, i.e.
— oy Siny + o5 COSy +a, cos?y = 0,
— 2a55iny 4 2045 COS Y 4 o5 cos?y = 0,

and this admits direct recovery of four inextensional solutions.
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It remains to identify the thirteen constants o, &, ..., @,5 with thirteen connexion quantities
as are depicted in figure 3; these connexion quantities are the values of U,, Uy, W, R¢,, Rp, at
each end and U,, Uy, R¢, at the mid-point of the geodesic line. Itis clear, however, that rearrange-
ment of equations (4.36) is necessary because of the difficulty in distinguishing respectively
between the values of 1, scosy and of cos 0, sin 6 (with 6 = scosy) when the non-dimensional
distance s is small in comparison with unity. Furthermore, the interpolation formulae of equa-
tions (4.36) break down when trying to deal with the situation which arises when the geodesic
line coincides with a generator, i.e. when y = 4=, 3x.

R¢x3
R¢03

le
U,
R¢u,

le
Up
W, 1
R ¢xl
R¢€1

Ficure 3. Nodal connexion quantities for displacement interpolation along a geodesic on a circular cylinder.

Rearrangement of equations (4.36) is facilitated by introducing special transcendental
functions to replace the trigonometric terms. Accordingly, let

gL (e et g
By = oy i Grant Gran
__Fjscos?y (4.39)

(J+2)(J+1)
Gj(s,y) = 3J(sF — F) + F,

be defined for positive integral suffices. Note that specimen functions F, and G, may be written

24
Fys,v) = costy (302 — 1 +cos 0),
Gol5,7) = —90 (g2 _ 44 4cosO+Osin0 A
s($,7) = oty +4cos@+0sinb),
and that the following identities are available along the geodesic,
cost = F, sinf = F, cosy
=1—3F,cos®y =0—}F5cos3y,
— 1-40+ 5 costy,
. _ 2 1 . (4.41)
x8inf = — (Fycos?y — %G, cos*y) tany

= — (02— §F,costy + 545G, cos® y) tan y,

xc080 = — (0 —}F3c08®y + §5G; cosPy) tan y.
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The functions F and G possess the following qualities,

Fi(s,7) > Gi(s,7)>s? as s—0,
F;(s, 4m) = G;(s,4n) =7 foralls,
Fj(s,7+7t) = Fj(‘ys Y)s Gj(s’ly"l'ﬂ) = Gj(S,Y),
OF;[0s = jF;_;, 0G;[0s = jG;_;.

(4.42)

Numerical values may be calculated without difficulty for all angles y, for example once Fg and F;
are evaluated from the series expression in equations (4.39) then the values of F,, F, ..., F, and
of Gy, G,, ..., Gg follow directly and accurately from the reduction formulae.

The equations (4.36) may now be rearranged into a more satisfactory form to interpolate the
kinematic conditions U ;. Thus

U,=4,+ 435+ A35%— D(s,7) cos?y,
Uy = By + Bys+ B3s?—@(s,y) sinycosy— (s, y) cosy +I'(s,y) siny cos?,
W = Cy+Cys+ G Fy(s, y) + Cy Fy(s,7) — I (s,7) siny cos?y,

Rp, = D, + Dys+ Dys*—D(s,y) cosy,

(4.43)

where D(s,y) = 34, Fy3+ 4, Fy,
F(‘Y"V) = €%A1G5+I§1542G’6:
¥(s,y) = §C3 3+ 1C, Fy,
» oI’ (4.44)
F (‘Y? 7) - E{,

A, = Dycosy — Bysiny cosy + 2C;sin vy,

Ay = Dgcosy — Bgsinycosy +3C,sinvy.

The A4,, 4,, ... are new constants which are related to a,, @y, ..., %3 by

Ay = oy + 0y, B, = ay+ay,,
Ay = ay+ay,c087, B, = a5 —agcosy +ay,siny,
Ay = ag— o5 c082y, By = ag— a5 cos?y —aygsiny cosy,
C1 = az + oy, Dy = oy, +ay3c087,
Cy = dg+ A1 COS Y + g5 SIN Y, D, = ozsiny + oty cos%y, (4.45)
Cy = —toagcos?y +aysinycosy, Dy = agsiny—3a,5cosdy,
Cy = —}oygcos®y —foygsiny cos?y,
4, = a3c08,

—_ 1 2
Ay = —Fo5c082y.

In contrast with equations (4.36), the rearranged equations (4.43) are free from all numerical
hazards; in the special case where y = $r (say, so that s = x) they simplify to

U, = A+ 4yx + 4342,
Uy, = By+ Byx + Byx?, (4.46)
W = C;+ Cyx + Cyx2 4+ Cy 43,

R¢p, = — (U;—0W|[00) = Dy + Dyx+ Dgx?,

which coincide with a form of displacement interpolation which is frequently encountered in the
finite element analysis of flat plates. When y = 0 (say, so that s = §) we can produce a similar
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form of representation by combining equations (4.43) in the following way

U,—R¢, = U, +0W[ox = (4;—D,) + (Ay— D,) 0 + (A5 — Dj) 62,
Uy—oW/[ds = Uy—0W[00 = (B, —C,) + (By—2Cs) 0 + (B; — 3C,) 62,
W = C,+Cy0+C3Fy(0,0) +Cy Fy(0,0),
R¢, = —3W|[0x = D, + D, F;(0,0) + D, F,(6,0).

(4.47)

An examination of equations (4.46) and (4.47) reveals that this U, can be used in the guise of
Hermitian interpolation to develop a lines of curvature compatible rectangular finite element;
it is then possible to proceed by straightforward application of the principle of minimum total
potential energy II, see equation (2.62). Details of this finite element are first presented before
going on to develop a more generally useful element which is triangular in shape.

4.2. A lines of curvature compatible rectangular finite element
In an application of the principle of minimum total potential energy it is necessary for the
displacement trial functions in U to satisfy inter-element kinematic subsidiary conditions
Uoir—Ugi = 0, (4.48)

see equations (2.63). In the case of the circular cylindrical shell, the column matrices U; and U,
are related to each other through equations (4.23) and (4.24); the subscripts + and — refer to
the two sides of the boundary C; of the ith finite element. Inter-element continuity can be achieved

(@ ®)
a a
7 6 5 7 6 5
L . @ [ @ ®
[/} )
1 3@ . S @4 3@ x 94
b 32 connexion quantities 32 connexion quantities
[ S— ® ® ® - ®
1 2 3 1 2 3
on, oW, oW,
U:cl a_xl sz + “é;“z U:cs + a_xs le sz st
oW, ow, oW,
Up— ETOI Uga— "a—e—z Ups— 6—03 Upy Up, Uss
W W, m W;
oW, owW; W
Er Tr Ria (=) R
oW, oW, oW;
"a—j 703 Rég, ( =— *agl + Um) Régy
W 02w, W, 2,
0x00 ox00 0x00 0x00

Ficure 4. Nodal connexion quantities for lines of curvature rectangular finite element on a circular cylinder.
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for a lines of curvature rectangular finite element by taking equations (4.46) and (4.47) in
association with nodal connexion quantities U,+0W/[ox, U,—0oW/[o0, W, oW /[dx, dW/d0,
02W[0x00 at the corner points and U, + W /0x, Uy — 0W[00 at the mid-sides of the rectangle (see
figure 4a). Thus, compatible trial functions in U; = (U, U, W)™ are calculated from
U,+0W[ox = A+ 4,0+ A30% + x (A, + Ay, 0 + Ay, 07)
+ x2(A1xx + A2xac0) +A3xw(a2 - x2) (b2 - 02):
Uy—0W/[d0 = B, + By0 + B3 0%+ x(B,, + By, 0 + By, 0%
$22(Byyy + Bogy) + Buala— ) (=00, (.40
W= C,+Cy0+C3Fy+CyFy
+2(Chp+ Cop 0 + Cgp Fy + Cy Fy)
+ x2(Clxac + szxe + CaxacF2 + C4mcF3)
+ xs(Clxxac + C2mcac0 + Csszz + C4xacacF3) .

The 4,, Ay, ... By, ... Cy, ... are thirty-four (new) constants which have to be expressed in terms
of the connexion quantities. Explicit expressions are readily obtainable for all but Cy, C,, ... and,
if desired, use can be made of Ahlin’s (1964) bivariate generalization of the Hermite interpolation
formulae in the manner of Bogner ef al. (1966). The sides of the rectangular finite element are
located at x = +a, 6 = +b and so the terms which involve the constants A;,, and By, are
independent of the requirements for inter-element displacement continuity. It is a little more
troublesome to express the constants Cj, Cj, ... in explicit terms of their connexion quantities;
the symbols F, and F; are written here in abbreviation respectively for Fy(0, 0) and F3(6, 0), see
equations (4.39) et seq.

A 32 x 32 element stiffness matrix £, may now be derived by substituting into the strain energy
integral f fN T%,d4; of equation (2.54); with the aid of the constitutive relations (2.48) we find
that T

D €ox L Coa
ffﬁ;féidAi ZHA“IE et v 10 69} dxd0
! €x0 0 0 2(1—V) exa
Kps)T [1 v 0 Kyos
+ R2D{ k v 1 0 K ¢ dxdO, 4.50
06
' Ko 0 0 2(1-v) Koo

where the small non-dimensional parameter £ is defined by equation (4.33) and the flexural
rigidity D is defined by equation (2.49). In carrying out the integrations it is useful to note that

F§(0,0) = $F,(20,0) + 4,
F2(0,0) = +Fy(20,0),
Fy(6,0) = 4 Fy(20,0) - S Fi(0,0),
F2(60,0) = é_?Fs(ze, 0) + g2 Fo(6,0) — = OF4(6,0), (4.51)
F3(0,0) = 22 (20,0~ 204y (0,0)
+ -11%2 OF,(0,0) — 56—7!6021?6(0, 0,

in addition to the relations already given in equations (4.39)—(4.47).
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The principle of minimum total potential energy (see equation (2.62)) requires that

Z{ffN;FSEidAi—ffp*TSUidAi—szN;’;TSUCi dCi} —0 (4.52)

where the 32 x 1 matrix of the external work done on the finite element by the prescribed surface
loads p* and boundary tractions N§ follows in a straightforward manner on substitutions from
equations (4.49) into the integrals of equations (2.55) and (2.56).

Care needs to be exercised at all stages in the numerical work. Large differences occur in the
orders of magnitude between the contributions to k; from the strains/stress resultants and the
curvature changes/stress couples, see equations (3.1). The measure of these differences is provided
by the small parameter £, typical values of which are listed in table 1. The consequences are that
a value £ ~ 10~ means at least p significant digits are at risk during the solution of the stiffness
equations. This contribution to the ill-conditioming of the stiffness equations is quite unavoidable in any
solution process of a shell problem which considers simultaneously, and in a satisfactory manner, the effects of
both bending and stretching actions.

TABLE 1. TYPICAL VALUES OF THE NON-DIMENSIONAL PARAMETER £

R[h 50 100 300 1000
k = h2[12R? 0.33 x 10— 0.83 x 105 0.93x 10-¢ 0.83 x 10~7

TABLE 2. TYPICAL VALUES OF THE M-CONDITION NUMBER FOR A 7 X I STIFFNESS MATRIX OF THE
LINES OF CURVATURE RECTANGULAR FINITE ELEMENT FOR CIRCULAR CYLINDRICAL SHELLS

average
M-condition M-condition
n Rk k number number
26 52.7 0.30x 104 0.3x 108 0.2 x 102
72% 52.7 0.30 x 104 0.1x10° 0.4 x 102
26 320.0 0.81x 10-¢ 0.4x 10° 0.2 x 102
72% 320.0 0.81x 106 0.1x 1010 0.4x 102

All these finite elements are of size 2a = 0.52, 2b = =. The asterisk refers to a 2 x 2 assembly of these elements.
The value of 7 refers to the reduced size of the stiffness matrix with rigid body freedoms constrained.

Many different criteria are available which indicate the measure of conditioning in a system of
simultaneous equations. Fried (1971) and Strang & Fix (1973), for example, favour a condition
number which depends upon the ratio of the largest and smallest eigenvalues. In the present
paper, we adopt a criterion which, although cruder, is simpler to calculate and is due to Turing
(1948). The quantity nM (k;) M (k;1), called the M-condition number of the n x n matrix k;, is

taken as the measure with
M(A) = max |a,|.
78

An average value of this M-condition number for a matrix with coefficients chosen at random
from a normal population is about % In n. The values listed in table 2 are those encountered in
our numerical work, they are calculated by first condensing the stiffness matrix so as to eliminate
the rigid body freedoms. An A-condition number & 10? means that a total of ¢ significant digits
may be lost during the solution of the stiffness equations and table 2 shows that a value ¢ = 10
can be attained even in a modestly small calculation involving very few finite elements. The
indications are that four significant digits are lost additionally to those attributable to smallness

13 Vol. 281. A.


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

154 L.S.D. MORLEY

of the parameter £, this loss of significant digits is more severe than normally encountered in the
solution of ordinary plate bending or plane stress problems and is naturally a matter of serious
concern in a major calculation. It is advisable, particularly when solving the stiffness equations,
to use double precision arithmetic to avoid further degradation from rounding errors.

An example problem which is often used to test shell finite elements concerns a circular cylinder
which is pinched by two concentrated radial loads each of intensity P as shown in figure 5. The
radius of the middle surface is R = 4.953 units, the uniform wall thickness is # = 0.094 units (for

P

1.045 R
3
0.57R
2 x 2 mesh of rectangular 2x 2 mesh of triangular
finite elements covering octant finite elements covering octant

Ficure 5. Pinched circular cylindrical shell showing the finite element mesh patterns.

the thick cylinder) and 0.01548 units (for the thin cylinder), the material properties are uniform
with Young modulus E = 10.5 x 10° in units which are the same as for P, R, & and Poisson ratio
v = 0.3125. The approximate values of R[4 are 52.7 and 320.0 and the parameter £ has
approximate values 0.300 x 10~* and 0.814 x 10~% respectively for the thick and thin walled
cylinders. The overall length of the cylinders is 10.35 units. Attention is drawn to the fact that the
above finite element has not been developed to deal either with the simple edge effect which
occurs at the free edges or the singular behaviour at the points of application of the concentrated
loads. Note also that the bending stresses are predominant over the remainder of the shell; this
example problem therefore presents an exceptional situation which is far removed from an ideal
practical design.
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Because of the symmetry, it is possible to confine attention to only one octant of the cylinder.
Numerical results are listed in table 8 for the radial deflexion underneath each load, also listed
are comparative results from Ashwell & Sabir (1972), Cantin (1970) and Cantin & Clough (1968)
all of whom make use of lines of curvature rectangular finite elements. The comparative results
are, however, obtained from finite element methods where the requirements of inter-element
continuity, see equations (2.63), are only partially satisfied. This is in contrast with the present
formulation which, because it provides a correct application of the principle of minimum total
potential energy, calculates the deflexion as a lower bound. This deflexion, calculated according
to inextensional shell theory, is

T4/ (inext.) R/t 2
P T 72D (1 - ;)’ .
where L is the overall length of the cylinder; values from this expression are also quoted in table 3

for the purpose of comparison.

TABLE 3. RADIAL DEFLEXION W UNDERNEATH EACH OF THE CONCENTRATED LOADS IN THE
PINCHED CIRCULAR CYLINDRICAL SHELL FOR THE LINES OF CURVATURE COMPATIBLE
RECTANGULAR FINITE ELEMENT

(a) Results for thick walled cylinder R[h ~ 52.7

10:wpP
r A M
mesh size Ashwell & Sabir
(see figure 5) (1972) Cantin (1970) present
1byl —0.1040 — —0.1040
2 by 2 —0.1103 —0.0931 —0.1092
4 by 4 —0.1129 —0.1126 —0.1111
6 by 6 —0.1135 —0.1137 —0.1121

Inextensional shell theory gives 102W et |P = — 0.1084.

(b) Results for thin walled cylinder R/h ~ 320.0

w(p
~ A N
mesh size Ashwell & Sabir Cantin & Clough
(see figure 5) (1972) (1968) 1 present
1byl —0.2301 —0.0001 —0.2327
1by8 —0.2406 —0.0070 —0.2434
2 by 8 —0.2414 —0.0070 —0.2436
3by8 —0.2418 —0.0070 —0.2439

Inextensional shell theory gives Wex)[P = —(.2428.

1 These values were calculated by Ashwell & Sabir (1972) by using the finite element as developed by Cantin
& Clough (1968). .

The magnitude of the stress couple M, at a point underneath either the concentrated loads is
infinitely large according to first approximation shell theory. Finite element results are spurious
in the vicinity of such points. Another peak value of this stress couple occurs mid-way between
the concentrated loads and this is of finite magnitude. Numerical results are listed in table 4 along
with the value

(4.54)

7 Tu\'"=

M éinext.) R ( 2)

13-2
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calculated according to inextensional theory. The finite element results confirm that the stress
resultants contribute negligibly, in the sense of equations (2.50), to the significant stresses; there
is thus no practical interest in recording these values.

Details of a computer program together with further numerical examples are given by
Merrifield (1976).

TABLE 4. STRESS COUPLE M, MID-WAY BETWEEN CONCENTRATED LOADS IN THE PINCHED CIRCULAR
CYLINDRICAL SHELL FOR THE LINES OF CURVATURE COMPATIBLE RECTANGULAR FINITE ELEMENT

Mpy[P
s A A
mesh size thick walled cylinder thin walled cylinder
(see figure 5) Rk = 52.7 R[h = 320.0
1byl 0.1248 0.1249
2 by 2 0.1001 0.0986
4 by 4 0.0919 0.0906
6 by 6 0.0901 0.0889
3by 8 — 0.0876

Inextensional shell theory gives M{***[P = 0.0870.

4.3. Discussion on an assumed stress hybrid triangular finite element

Useful application of rectangular finite elements is limited to special problems where the
boundary contours of the shell coincide with the lines of curvature. A more practically useful
finite element is triangularly shaped where each side coincides with a geodesic line; the triangular
shape can approximate quite closely almost any boundary contour and can be easily varied in
size in any region which is of particular interest. The development of such an element for shells is
by no means a straightforward task, especially as it is now clear that there are serious difficulties
in securing suitable displacement trial functions in U;, over the element, which satisfy the inter-
element kinematic continuities of equations (2.63) and (4.48). In comparison, the difficulties
which occur in deriving a triangular finite element for ordinary plate bending problems become
almost trivial.

As described in §2, however, many finite element methods have been formulated with under-
lying variational principles which relax continuity requirements along the element boundaries.
A particularly effective application of one of these principles is made by Allman (1970), in an
analysis of the ordinary plate bending problem, by using an assumed stress hybrid finite element
model first introduced by Pian (1964) in a plane stress context. The functional associated with
this model is a limiting case of that given in equation (2.64) where it requires U,;, p* = 0. In
Allman’s application the trial functions in U, which interpolate the kinematic conditions along
the boundary C;, provide a cubically varying interpolation of the displacement /¥ and a linearly
varying interpolation of the slope 01/[dv; the trial functions in Nﬂi over the element are taken as
a complete set of linearly varying distributions of stress couples which automatically satisfy the
equations of homogeneous equilibrium.

The success of Allman’s finite element provides a compelling incentive to investigate a similar
assumed stress hybrid model for the circular cylindrical shell. The interpolation formulae given
in equations (4.36) and (4.43) are relevant for use as trial functions in Ug,, but note that it is
necessary to interpolate simultancously the pseudo-quadratic in surface displacements U, and
U, which require mid-side connexions as shown in figures 3 and 6. Moreover, the pseudo-
quadratic slope R¢, also requires a mid-side connexion and this is in contrast with Allman’s
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linearly varying 0W/dv. The requirement for mid-side connexions turns out to be unfortunate
because, as is later shown and explained both by Allman (1976) and by Bartholomew (1976),
their introduction into Allman’s finite element with the linearly varying trial functions in N i
leads to a rank deficient stiffness matrix. It is too complicated to apply Allman’s and
Bartholomew’s arguments to shell finite elements and so it was decided to conduct numerical
experiments with trial functions in U, as given by equations (4.36), (4.43) but using several
different choices for the trial functions in Nj;. (Rank deficiency with a slightly different aspect is

UxS
Uy,
Ws

R ¢x3
R ¢03

le U. 2
Up, U;
w, R 2
R¢x1 ¢V2
Réo

(a) 24 connexion quantities used for element development

UxS
Ups
Ws
R'¢x3
R¢03

le

Ugs. U,, or Uy,

W, :

R ¢xl'

Ry

(b) 18 connexion quantities in final version

Ficure 6. Nodal connexion quantities for triangular finite element in a circular cylinder.

experienced by Pian & Mau (1972) in an assumed stress hybrid model for planar continua using
a quadrilateral finite element which has only corner nodes; they follow Fraeijs de Veubeke (1965)
in referring to the phenomenon as ‘kinematic deformation modes’. Pian & Mau, incidentally,
accept the rank deficiency in their element stiffness matrix but ensure an adequate arrangement
of finite elements, in combination with kinematic constraints on the structure boundary, to
provide a rank sufficient global stiffness matrix.)
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Now, the choice of the finite and usually rather small number of trial functions in Nﬂi is by
no means arbitrary if convergence to the correct solution is to be secured in the limit of the finite
element representation. It is required that some of the strain and curvature changes in the
associated &g; be integrable and that they directly recover at least the sensitive inextensional
solutions and two of the particularized strainst as are already recoverable by the trial function
in U, for the kinematic conditions at the element boundary. (Note that Allman’s (1970) applica-
tion of the assumed stress hybrid model recovers neither states of constant curvature change nor

TABLE 5. RANK OF 24 X 24 STIFFNESS MATRIX K; FOR ASSUMED STRESS HYBRID TRIANGULAR FINITE
ELEMENT USING TRIAL FUNCTIONS Nj CALCULATED FROM COMPLETE POLYNOMIALS OF
VARIOUS DEGREE FOR THE STRESS FUNCTIONS X,, X9 AND i/ IN CIRCULAR CYLINDRICAL SHELLS

degree of complete polynomial in y, 0 rank of
‘ A \ element stiffness number of
Xa Xo 2 matrix stress fields
9 —_ — 4 5
3 — —_ 5 9
4 — — 5 14
5 — — 5 20
— 2 — 4 5
— 3 — 5 9
— 4 — 5 14
— 5 — 5 20
— — 2 6 6
— — 3 10 10
—_ — 4 12 15
2 2 — 8 10
3 3 — 10 18
2 2 1 11 13
2 2 3 14 20
2 2 4 16 25
3 3 2 14 24
3 3 3 16 28
3 3 4 18 33

Note: a rank of 18 is required for a 24 x 24 stiffness matrix.

the correct stress couples when the thickness and/or material properties of the finite element are
allowed to vary.) These requirements are satisfied for circular cylindrical shells with uniform
wall thickness and uniform material properties when the trial functions in Flﬂi are calculated
from complete polynomials of at least second degree in the surface coordinates x, 0 for the stress
functions y, and y, and of at least first degree for the stress function ¢ (see equations (4.13)).
In the present consideration of the assumed stress hybrid model, the triangularly shaped finite
element has the 24 connexion quantities as shown in figure 6 4. A rank of 18 is thus required for
the 24 x 24 element stiffness matrix, namely, 24 displacement connexion quantities less the 6 rigid
body freedoms. Values of this rank from experiments on various trial functions in Nﬁi, calculated
from complete polynomials in #, 6 for the stress functions y,, x, and ¥, are listed in table 5. Under

1 Note that the stress resultants and stress couples in Nﬂi must satisfy the partial differential equations of
homogeneous equilibrium, see equations (2.43) and (2.66). Under these conditions it is possible to secure only
two particularized responses in the stress resultants NV, Ny, IV}, because of the essential relation Ny R, + Ny /R, = 0
(i.e. N, = 0 for cylinders). These remarks are the static-geometric equivalents of those given in the Introduction
concerning the basic state (IT) of static response. ’
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these circumstances, it is seen that to achieve the desired rank of 18 requires at least 33 stress fields
as are derived from the stress functions

Xz = B1x+ o0+ Bsx®+ fyx0 + f50% + B 2% + Br 520 + Sy x0% + f, 63,

Xo = Brox +L110+ Brax® + B13%0 + B140° + B15%° + P16 ¥%0 + f1720% + 15 03,

U = Pro+ Paox + P10 + Paa ¥% + Pag 0 + B2g O + Bosx® + fog ¥%0 + B x02
+ Bag 03 + Bag x* + B3 x30 + P31 X202 + B3, x0° + B33 04,)

(4.55)

where By, B, ... are constants. Note that y,, ¥, = constant both give zero stress fields, note also
that these conclusions on rank are independent of the uniformity of material properties, thickness
and geometric configuration of the triangular element.

This is too large a number of stress fields to be handled with ease in practical situations. From
experience with Allman’s plate bending finite element it is recognized that it is the presence of the
mid-side connexion quantities which is responsible for the difficulty in achieving requisite rank.
Unlike the ordinary plate bending problem, however, the mid-side connexion quantities cannot
be so readily eliminated in shell finite elements because of the nature of the transcendental func-
tions which describe the rigid body movement. Moreover, elimination of just the connexion
quantity R¢,, see figure 6, does not secure worthwhile improvement; a conjecture, based upon
the results given in table 5, is that as many as 25 stress fields would still be required to achieve
rank 15 for the 21 x 21 stiffness matrix. These 25 stress fields are derived from stress functions

Xz = Bix+ o0+ fax® + Byx0 + 562,
Xo = PBex+ 70+ fex?+ Pox0 + 1,02,

Y = fry+ Prax + Pra0+ Br14x% + P15%0 + 16 0% + P17 X% + f13 420 + 19 %02 J
+ Lg%+ Por1 X* + Pon 430 + Py x%0% + 4 x0° + B4 0.

(4.56)

Furthermore, element flexibility matrices, as calculated from stress functions like those given in
equations (4.55) and (4.56), exhibit an even more marked propensity towards ill-conditioning
than was encountered in the stiffness matrix k; of the rectangular element (see equation (4.50)
and compare the condition numbers listed in tables 2 and 6).

The conclusion is that the assumed stress hybrid finite element model does not provide a
practical means of solving the present shell problem. Hence the motivation to evolve a more
versatile variational principle, see equations (2.67) and (2.73), where the trial functions in —Nﬂi
for stress resultants and stress couples may be supplemented with trial functions in U, for dis-
placements. Amongst other advantages, requisite rank in the element stiffness matrix k; is then
achievable through the simplest possible trial functions. In the present problem of the circular
cylindrical shell with walls which have uniform thickness and uniform material properties, the
new variational principle permits the development of an efficient triangularly shaped finite
element where the stress resultants and stress couples are only linearly varying in the surface
coordinates. However, let us first investigate the elimination of mid-side connexion quantities.

4.4. Elimination of mid-side connexion quantities

The rank deficiency which is encountered in the derived stiffness matrix from the assumed
stress hybrid model is associated with the presence of mid-side connexion quantities in Ug; (see
figures 3 and 6). Let us now examine whether it is feasible to modify the interpolation formulae
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ofequations (4.36) and (4.43) so as to eliminate these quantities. The elimination is to be arranged
so as not to disturb the capability to recover the particularized strains, sensitive inextensional
solutions and arbitrary rigid body movements.

The following difference relations may be derived from the interpolation formulae of
equations (4.36),

30z — Upe + 3Ups = 355 — at45(1 — cos 05),
$Upy — Ups + 3 Upy = a1 53 — ct19(1 — c0s 03) + 21323 5in O,
— 3 (WL —W;) = ags3+ 0ty 8in O3 — 5% cOs O,

L LA 6
s\ T o) = %t cosbycosy

+ a5 (cos O3 siny + x5 5in O3 cos ),

(4.57)

3Rp,, — R,o+§RP,5 = —t13(1 — c0s O5) cos y + g s3sin y,

where, see figure 3, U,,, ..., 0W;/0s, ... refer to the values of U, ... 0WJ0s, ... at node 1, s, refers to
the value of the surface coordinate s at node 3 and

X3 = —Sysiny, 03 = s3co87y. (4.58)
Note also that from equations (2.17) and (2.27)
OW[os = R, siny —Rp,cosy + Uycosy, (4.59)

while from equations (2.34)
Rp, = Rp,cosy + Rep,siny. (4.60)

The simultaneous equations (4.57) permit the five constants o, o, &g, 6,y and a5 to be
expressed in terms of five combinations of quantities which are simply related to the actual con-
nexion quantities. However, the constants a;, and a3 relate directly to the displacement as
a rigid body and cannot therefore be selected as candidates for elimination. The constant e is
also unsuitable because its elimination relates only to connexion quantities at end points, i.e. at
nodes 1 and 3. Now, equations (4.57) may be solved to give

3RO, — RP,o+ 3RP,3— (3Upy — Upo + $Up) cosy = s3(otgsiny —azcosy) (4.61)

so that if we put
AgSiny —otgcosy = 0 (4.62)

then the mid-side connexion quantity R¢,, may be eliminated by expressing it in terms of the
remaining quantities in equation (4.61). The equations (4.45) show that the relation
D3—Azcosy =0 (4.63)
is equivalent to equation (4.62).
A further mid-side connexion quantity may be eliminated if, instead of equation (4.62), we put

g = og = 0; (4.64)

reference to the equations (4.36) shows that this substitution still does not disturb the direct
recovery of the three particularized strains of equations (3.58), the two most sensitive inexten-
sional solutions of equations (4.27) (i.e. the terms which involve the constants ¢; and ¢;) or the
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rigid body movements of equations (4.25). Thus, after substituting from equation (4.64), the
equations (4.57) may be solved to give

3R, — R,y + 3RP3 — (3Upy — Upp + 3U,g) cosy = 0 (4.65)
cf. equations (4.61) and (4.62), together with

1
2

onw, oW,
-1+ =G + 52000

+ (3Un — Upa + 3Ups) f2(03) = (3Upy — Upa + 3Us) %3 = 0, (4.66)

where £(6,) = (1—cosfy)? 3F3(s3,7)
B8 5in05(03— sinbs) — 2Fy(ss,y) Fs(ss,7)’

. (4.67)
£(0) = (sin by - 03 cos 03).(1 —cosl3) _ Fy(ss, y) Gy(ss, 7) cos y
B sin 03(05 — sin 03) Fi(s5,7) F3(s3,7)
Equations (4.42) show that in the limit as 03— 0, i.e. as y -},
lim £,(05) = 8, lim /y(05) 0, = . (4.68)

Equation (4.65) allows the mid-side connexion quantity R¢,, to be eliminated by expressing it
in terms of other connexion quantities, while equation (4.66) allows the subsequent elimination
of either Uy, or U,, depending upon whether, say, |03] > or < |xg|. If equations (4.64) are
substituted into the rearranged interpolation formulae as presented in equations (4.43), then
the following relations hold

D, = Agcosy, Cy=3(A4ssiny+ Bycos®y), 4, = A4, (4.69)

The above elimination procedures preclude recovery of the two least sensitive inextensional
solutions in equations (4.27), namely those terms which involve the coefficients ¢; and ¢;. The
recovery of all four inextensional solutions may, however, be achieved if only one mid-side
connexion quantity is eliminated on the basis that the strain ¢, is constrained to remain constant
along the geodesic line, see equation (4.38), thus

0 .
% (Re;) = 0 = —20t35iny + 205 COS Y + g COs2 Y, (4.70)

rather than being allowed to vary in some constrained linearly varying manner. The equations
(4.57) can now be resolved to provide a relationship like equations (4.65), (4.66) although the
new relation takes on a much more complicated form. The relation

—24,siny +2Bgcosy +Cycos2y = 0 (4.71)

is equivalent to equation (4.70). It is to be remarked, however, that there is no certainty that this
particular elimination is effective in resolving the rank difficulties discussed in §4.3.

Equations (4.46) show, in the special instance where the side coincides with a generator,
i.e. where y = =, 3=, that it is legitimate to eliminate all three mid-side connexion quantities
U,s, Ups, R,e. Practical application is, however, really restricted to the lines of curvature finite
element developed in §4.2. Equations (4.47) confirm that Uy, but not U,,, can be eliminated in
the special case where the side coincides with a circumference, i.e. where y = 0, 7.

14 Vol. 281, A.
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4.5. Triangular finite element using new variational principle

A more versatile variational principle was introduced in §2.4 in anticipation of difficulties
to be encountered with Pian’s assumed stress hybrid finite element model. The new variational
principle requires trial functions in

(i) Ug; which interpolate the kinematic conditions along the boundary C; of the :th finite
element;

(i1) Nﬂi which partially describe the stress resultants and stress couples over the surface 4; of
the element;

(iii) U,; which partially describe the displacements over 4;.

The trial functions in N 5 and U,; supplement each other to provide completeness in the strain
energy 3 f f (NT, +N%) (€,5+85;) d4;. The kinematic subsidiary conditions on the trial functions
in U, are that they are linearly related in some (best) way with the trial functions in U, e.g.
through

U,c; = Ug; at points on C;,t } (2.65 bis)

Ug; = U*  where U* is prescribed,
where U, is expressed in terms of U,; by equations like (4.23) and (4.24). Subsidiary conditions
on the trial functions in N, s are such that they satisfy the differential equations (2.66) of homo-
geneous equilibrium over 4,.

The variational principle separates naturally into two successively applied principles. The
first operates at element level and only the trial functionsin N 5; are subject to arbitrary variation

f 8N} EﬂidAi‘fs'vﬁoi(Um = U,¢:) dC; = 0, (2.67 bis)

it relates N, with U,. The second principle applies at global level where the trial functions in
Ug; are subject to arbitrary variation,

z{ f f (NE, 4 N5, — NZ) (52, + 82,) dd, + f NZ,3Uq, dC, — fwz N;‘;TSUCidCi} —0; (2.73 bis)

the column matrix Nm- which deals with the distributed surface load p* is readily calculated
from equations (3.45) and (3.46).
This variational principle is now employed to develop a triangularly shaped finite element for
a circular cylindrical shell with a wall of uniform thickness and uniform material properties.
Initially, it is convenient to assume that the triangle has a full complement of 24 connexion
quantities as depicted in figure 6 4. The trial functions in U, which interpolate the kinematic
conditions along C,, are then suitably expressed by equations (4.43) and the 13 constants 4;, 4, ...
are readily determined in terms of the 13 connexion quantities along each side
The trial functions in Nﬂi are selected in accordance with similar criteria as laid down in §4.3
for the assumed stress hybrid model, namely they are calculated from complete surface poly-
nomials of ¥ and 0 for the stress functions ¥,, Xs, Y. Because these trial functions are to be
supplemented by trial functions in U,,, attention may be confined to polynomials of minimum
degree, thus
Xo = 1%+ a0+ f3x® + fyx0 + f5 0%,
Xo = Lo+ 20 + Py + By x0 + f19 0%, (4.72)
¥ = Pri+ Prax + 130,

1 See footnote on p. 130.
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where £, B,, ... are constants. These give 13 stress fields which are linear in x and 0 (cf. the fourth
degree polynomial stress fields of the 33 stress functions in equations (4.55)). A 13 x 13 element
flexibility matrix H; is then derived by substituting into the strain energy integral % f f N}i g5, d4,;,
see equation (2.67), after making use of the constitutive relations (2.48). Itis recalled thatin §4.2
it is suggested that Turing’s (1948) AM-condition number be used to measure the conditioning of
a matrix. A comparison of M-condition numbers in table 6 for the 13 x 13 matrix H;, with those
in table 2 for the comparatively larger 26 x 26 reduced stiffness matrix k; of the compatible lines
of curvature rectangular element, indicates that the problems of matrix conditioning remain
severe and highlights the continuing need for care in the numerical work. Assuming for the
moment that U,; = 0, the table 5 shows that the 13 trial functions in N, p; when taken in con-
junction with the Ug,; of equations (4.43) yield a 24 x 24 element stiffness matrix which has
rank 11.

TaBLE 6. TYPICAL VALUES OF THE M-CONDITION NUMBER FOR THE ELEMENT FLEXIBILITY AND
STIFFNESS MATRICES OF THE TRIANGULAR FINITE ELEMENT FOR CIRCULAR CYLINDRICAL SHELLS

flexibility matrix H; stiffness matrix k;
(13x 13) (12 12)
(s e Al ~ A ]
average average
M-condition M-condition M-condition M-condition
Rl k number number number number
52.7 0.30x 104 0.5x 108 0.9x 10t 0.2 x 107 0.9x 10t
320.0 0.81x 108 0.2 x 1010 0.9 x 10t 0.9x 108 0.9x 10t

All these triangles are right angled triangles with the smaller sides of size 0.26 and 4n. The reduced size of the
stiffness matrix is quoted where rigid body freedoms are constrained.

The primary réle of the displacement trial functionsin U,;is to augment the rank of the element
stiffness matrix. Thus if attention is confined just to those U,; which give rise to linearly varying
stress fields then the rank can be augmented at most from 11 to 16 in correspondence with the
5 surface force distributions pX, pi, pi, xpf, Op5 of equations (4.29) and (4.30). Accordingly,
consider the following trial functions in U,

U, +0W[ox = ayx + 0te 0 + g 5% + g 20 + 502 + (0,,),
Uy —0W[30 = agx + 00y 0 + g x? 4 oty x0 + ¢,y 02 + (0y5), (4.73)
W = oy +agpx+a30+ (04 Fy + oy Fay +agg xFy + a9 xFy),

where a;, «,, ... are constants. The six terms in parentheses, %4, ;5, ..., %9, COntain expressions
which describe the rigid body movements, see equations (4.25), these terms do not contribute
novel stress distributions. The functions F,, F,, F; are defined by

F, =F,(0,0) =sind,
Fy = F,(0,0) = 2(1 —cos¥), (4.74)
Fy = Fy(6,0) = 6(0—sin0),

see equations (4.41); evaluation of these functions is accomplished accurately by using equations
(4.39). :
14-2
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The 19 trial functions in U,; may be related to the 24 connexion quantities in U, through the
kinematic subsidiary conditions given in equations (2.65). The number of possible equalities
needs, however, to be reduced to 19 by temporarily removing 5 connexion quantities (other than
mid-side connexion quantities) so that the resulting 19 x 19 matrix is susceptible to inversion.t
Note that the boundary distribution U, is here directly recoverable by the trial functions in
Ug;, cf. equations (4.43) and (4.73). The choice of trial functions in U,; need not, however,
be so strictly inhibited.}

The 24 by 24 element stiffness matrix k; may now be derived by substituting into the strain
energy integral } f f (NT, +N%;) (€4 +24;) d4,, equation (2.73), and making use of the constitutive
relations (2.48) together with the fact that Ny, is already known in terms of Ug; and hence of the
element connexion quantities. It is remarked that the numerical work involved in calculating
both the element flexibility matrix H; and the element stiffness matrix k; is relatively simple
because only linearly varying stress fields are involved.

The rank of this 24 x 24 matrix k; is 16, it is therefore deficient. The remedy, of course, is to
reduce the size of k, by eliminating mid-side connexion quantities as described in §4.4. Although
an elimination of just three mid-side connexion quantities is sufficient to restore the correct rank,
one may as well adopt the philosophy that as many of these quantities as possible (i.c. 6)
should be eliminated because this results in no further degradation of the recovery capabilities
of the trial functions. When this is done, the element stiffness matrix k; is reduced to a size of
18 x 18 and has rank sufficiency of 12; the 18 connexion quantities which remain are

Usi,  Uyp or Uy, Uss, Uggor Uy, Uss,  Upg or U,

U01> (]03’ (](95)

", Ws, W, (4.75)
R .1, R s, Res,
Ry, Régs,s Regs,

as illustrated in figure 65. The choice between U, or Uy, etc. is dependent upon the orientation
of the particular side of the triangle, see equation (4.63) ¢t seq. Table 6 shows that the AM-condition
number for this k; is slightly improved over that for the element flexibility matrix H,.

To summarize, this triangularly shaped finite element for circular cylindrical shells having
walls of uniform thickness and uniform material properties directly recovers (I) the three
particularized strains; (II) the two most sensitive inextensional solutions; (III) the six
different modes of rigid body movement.

The same example problem of a pinched cylinder, as treated in §4.2, is solved with this
triangular finite element. Numerical results are listed in table 7 for the radial deflexion W under-
neath each of the concentrated loads and in table 8 for the stress couple M, mid-way between the
concentrated loads. All these results are specific to an elimination procedure for the mid-side
connexion quantities which is based upon equation (4.64). This particular elimination procedure,
however, prejudices the direct recovery of two of the four inextensional solutions. In consequence,
these numerical results reflect a finite element which is slightly overstiff in bending, cf. the known

t First select the two vertices which belong to the side of the triangle which most nearly coincides with a
generator. Remove R, from the one vertex which provides the intersection with the side most nearly coinciding
with a circumference, then remove R@,, Rp, from the other vertex. Lastly, remove the connexion quantities W
from all but one of the three vertices of the triangle.

+ For example, we may complete the surface (pseudo) cubic by adding the terms oggx?+ oy x° + 255 %% to the
expression for W in equation (4.73).
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values from inextensional theory and with those obtained from the lines of curvature compatible
rectangular finite element described in §4.2; it is likely that an elimination procedure which is
based upon equation (4.70) would provide considerably more accurate results in this instance.
Note that in table 7, although the magnitude of the radial deflexion W underneath each concen-
trated load is less than the comparative result from the compatible rectangular finite element,
the underlying variational principle does not now provide a bound.

In other numerical examples, it is found that although the membrane action solutions which
belong to the coefficients ¢; and ¢; in equations (4.30) and (4.34) cannot be directly recovered
they are, indeed approximated quite accurately with a relatively coarse mesh. The overall con-
clusion is that this triangular finite element shows considerable promise in its application to many
different kinds of practical problems where both the stresses and displacements are smoothly
varying over the shell surface and where edge effects are of small consequence.

TABLE 7. RADIAL DEFLEXION J// UNDERNEATH EACH OF THE CONCENTRATED LOADS IN THE
PINCHED CIRCULAR CYLINDRICAL SHELL FOR THE TRIANGULAR FINITE ELEMENT

thick walled cylinder thin walled cylinder
mesh size Rjh = 52.7 R[r = 320.0
(see figure 5) 102W[P wip
2 by 2 —0.0796 —0.1782
4 by 4 —0.1012 —0.2254
6 by 6 —0.1052 —0.2341
3 by 8 — —0.2360
inextensional —0.1084 —0.2428

shell theory

TABLE 8. STRESS COUPLE Af0 MID-WAY BETWEEN CONCENTRATED LOADS IN THE PINCHED CIRCULAR
CYLINDRICAL SHELL FOR THE TRIANGULAR FINITE ELEMENT

My[P
. - AL N
mesh size thick walled cylinder thin walled cylinder
(see figure 5) R[h = 52.7 R[h = 320.0
2 by 2 0.0631/0.0631 0.0631/0.0631
4 by 4 0.0808/0.0808 0.0804/0.0804
6 by 6 0.0841/0.0841 0.0837/0.0837
3by8 — 0.0844/0.0844

Inextensional shell theory gives M§"*)[P = 0.0870. Note that My is multi-valued on inter-element boundaries.

5. CONCLUSIONS

Under the precept that the practical and efficient numerical analysis of shells is far from a
reality, the finite element method is re-examined and contributions are given towards the solution
of a special class of shell which has a developable middle surface.

As a preliminary, working formulae are assembled for a valid first approximation theory most
suitable for finite element analysis of linear small deflexion behaviour of arbitrary shells. This
makes reference convenient, unambiguous and consistent. The outline derivation is presented in
lines of curvature coordinates, with subsequent transformations along arbitrary orthogonal
directions to facilitate the introduction of geodesic coordinates. A further preliminary introduces
a variational principle which is more versatile than that used in the well known assumed stress
hybrid finite element model. The new principle makes use of assumed displacements which are

14-3
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supplemented with assumed stresses; its main purpose is to overcome problems of excessive rank
deficiency which occur in the derived element stiffness matrix of the assumed stress hybrid finite
element model.

Continuing in the general context, it is recalled that the finite element method is a piecewise
application of the Rayleigh-Ritz variational process and, as such, requires trial functions. Diffi-
culties are experienced, however, in deriving a set of satisfactory piecewise trial functions for
shells and these difficulties are unlike any which have been encountered in analysis in the plane.
The guidance of sufficiency conditions is usually sought because they provide assurance of con-
vergence in the limit of the finite element representation. However, existing sufficiency condi-
tions, directly extrapolated from those for planar continua, are not really applicable to shells and
therefore provide inadequate guidance. The paper contends that practical conditions for
convergence in the finite element analysis of shells require the trial functions to have capability
to reproduce, in a general but piecewise smoothly varying way, each of four basic states of static
response. These states are essentially

(I) membrane actions where the stresses from bending vanish;
(IT) inextensional deformations where the middle surface of the shell remains unstretched;

(IIT) rigid body movements which contribute nothing to the stresses or strains;

(IV) simple edge effects where the stress/strain intensities from stretching and bending are
essentially of the same order of magnitude and decay rapidly with distance away from the edge;
the simple edge effect varies smoothly along the edge.

The above mentioned working formulae are specialized for shells with developable middle
surface and, preparatory for finite element analysis, general solution forms are derived for
inextensional deformations as well as for membrane actions and rigid body movements. It is
shown how to derive the ‘most sensitive’ inextensional solutions from the general solution forms
for the rigid body movements. (Sensitive solutions are the smoothest distributions of displace-
ments which produce inextensional deformation; many finite element analyses produce extra-
ordinarily inaccurate results when they are set the task of recovering these simple and basic
deformations.) All these general solution forms are, incidentally, readily available only for
certain shell shapes such as the developable surface which, fortunately, includes the most com-
monly occurring shapes used in technology. The objective is moderated, however, so as to
exclude questions of edge effect and this inevitably restrains the useful application of the finite
elements which are developed in the sequel. Edge effects in finite element analysis will have to
form the subject of further and special investigation.

Specific application of the formulae is then made in the development of finite elements for
circular cylindrical shells. Central to the finite element development is the interpolation of
kinematic continuity conditions along an arbitrary geodesic line. The interpolation is carried out
so that it is pseudo-quadratic for the insurface displacements and pseudo-cubic for the out of
surface displacement.

This interpolation is first used in the guise of Hermitian interpolation to develop a lines of
curvature rectangular finite element, which is distinguished from all other known shell finite
elements because it directly recovers (I) essential membrane actions; (II) sensitive inextensional
solutions; (III) arbitrary rigid body movements, and satisfies all inter-element continuities as
are demanded by the underlying principle of minimum total potential energy. Numerical appli-
cation is given to an example problem which is often used to test shell finite elements, this concerns
a circular cylinder which is pinched by two concentrated radial loads. The results are very
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satisfactory and the deflexion underneath the load is calculated, for the first time, as a lower
bound. It is emphasized that in all numerical work on shells, it is necessary to take great care
because of the inevitable loss of (at least four) significant figures which occurs because of the
considerable differences in orders of magnitude in the stretching and bending contributions to the
stiffness matrix.

It is recognized that useful application of the rectangular finite element is limited to special
problems where the boundary contours of the shell coincide with the lines of curvature. Conse-
quently, attention is next given to the development of a more practically useful finite element
which is triangularly shaped with each side coinciding with a geodesic line. The possibility of
development by using the well known assumed stress hybrid finite element model, is first dis-
cussed. The conclusion, however, is that this does not provide a practicable means of solving this
shell problem because the presence of mid-side connexion quantities leads to unacceptable
difficulty in acquiring requisite rank sufficiency in the derived element stiffness matrix. Recourse
is thus made to the more versatile variational principle, earlier introduced, so as to develop
a satisfactory finite element where the stress resultants and stress couples are only linearly varying
in the surface coordinates. This finite element also performs satisfactorily with regard to the afore-
mentioned basic states (I), (ITI) and (III) of static response; it is anticipated that it will find
widespread application. Satisfactory numerical results are obtained in its use to solve the same
test problem of the pinched cylinder.

LisT OF PRINCIPAL SYMBOLS

All symbols are defined when first introduced.

Two right handed orthogonal curvilinear coordinate systems are used on the shell reference
surface, namely lines of curvature coordinates &;, £, and arbitrary coordinates v, o. The lines
o = constant are used also to define the boundary C of the shell and/or the boundary C; of the
ith finite element. Special notation is used for circular cylinders, see equations (4.1) ef seq.

The following superscripts are generally used

(inext.) inextensional action
(memb.) membrane action
(r.b.) rigid body movement
* prescribed quantity .
The following subscripts are generally used
c action at the boundary
i tth finite element
o actions derived from trial functions in the displacements
B actions derived from trial functions in the stress resultants and stress couples
A area
D flexural rigidity, defined in equation (2.49)
e, e, e, unit vectors in the z;, z,, z; rectangular Gartesian coordinate system

E Young modulus

h wall thickness

k small parameter defined in equation (2.50)
My, Myy, My, = M, stress couples

M, M, stress couples
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stress resultants

N,, N, stress resultants

Ny, modified shear stress resultant defined in equation (2.45)

0 ‘a term of order most...’

by, pF, p* distributed surface forces acting in the &;, &,, z directions

Q. Qs shear stress resultants acting in z direction

Q, shear stress resultant acting in z direction

JFr r radius vector of an arbitrary point on the shell reference surface

< ]iﬂ‘ R, R, principal radii of curvature in the &;, £, directions
- R,R, R, radii of curvature defined in equations (2.30)
§ e t, t, unit vectors in the &, &,, z directions
O =~ t,t,.,n unit vectors in the v, o, z directions
=7 E U displacement vector of a point lying on the shell reference surface, defined in
= O equations (2.15), (2.31)
E g U, Uy, W components of displacement acting in the £, £,, z directions
e v,U.,w components of displacement acting in the v, o, z directions
5% |4 Kirchhoff stress resultant acting in the z direction
E; z coordinate normal to the shell surface
82 5 24, 2oy 23 rectangular Cartesian coordinates
9‘2’ 0y, Ay coeflicients of the first fundamental form for &,, &, coordinates
TS Ay Oy coefficients of the first fundamental form for v, o coordinates
= v included angle between vectors ¢, and ¢,

€115 €295 €12 = €21 components of strain

€ components of strain

ws €oas €gv = g

K115 Kooy K195 Koy components of curvature change

Kops Koos Kyos Ky components of curvature change
K195 Kyor modified changes of twist defined in equations (2.21) and (2.38)
v Poisson ratio
v, o arbitrary orthogonal curvilinear coordinates on shell reference surface (the
symbol v is used also to denote the Poisson ratio)
£, & lines of curvature curvilinear coordinates on shell surface
o P1> P25 P coefficients defined in equation (2.14)
| D1 Do P components of rotation
::J Dy Bos Do components of rotation
> > D rotation vector of a point lying on the shell reference surface, defined in
O : equations (2.16), (2.33)
[i 5 X1, Xo» ¥ stress functions
ZO A bold faced character denotes a matrix and the symbol T denotes that the transpose is to
=« be taken
-
§é N = (Nn Nyo ]_\_r12]V21 M11M22M12M21)T
EE 0 E = (N Ny, leﬁwu My 2My5)"
85 o Np = (]Vllp ]V22p N:sz Alllp Alzzp 21141219)'1‘
92 NC= (M’VMO’MJVK)T
= Noo = (N oy M i)™
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NE = (Nyy Nyg M3 V)"
N& = (MV MU’MJV MJO’ QV)T
p* = (pfpp™)"

U= (G, GW)T

Ug = (G0 6, W)*

U = (UFUF ¢ W)T
Uo = (G, U, 8,6, W)"

- T
& = (€11 €29 €12 691 K11 K22 K12 Ka1)
s = \T
& = (€19 6222615 K11 K9 Kyp)
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